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ABSTRACT: Visual speech recognition, often referred to as lipreading, has garnered significant attention in recent years due to its 

potential applications in various fields such as human-computer interaction, accessibility technology, and biometric security 

systems. This paper explores the challenges and advancements in the field of lipreading, which involves deciphering speech from 

visual cues, primarily movements of the lips, tongue, and teeth. Despite being an essential aspect of human communication, 

lipreading presents inherent difficulties, especially in noisy environments or when contextual information is limited. The McGurk 

effect, where conflicting audio and visual cues lead to perceptual illusions, highlights the complexity of lipreading. Human 

lipreading performance varies widely, with hearing-impaired individuals achieving relatively low accuracy rates. Automating 

lipreading using machine learning techniques has emerged as a promising solution, with potential applications ranging from silent 

dictation in public spaces to biometric authentication systems. Visual speech recognition methods can be broadly categorized into 

those that focus on mimicking words and those that model visemes, visually distinguishable phonemes. While word-based 

approaches are suitable for isolated word recognition, viseme-based techniques are better suited for continuous speech recognition 

tasks. This study proposes a novel deep learning architecture for lipreading, leveraging Conv3D layers for spatiotemporal feature 

extraction and bidirectional LSTM layers for sequence modelling. The proposed model demonstrates significant improvements in 

lipreading accuracy, outperforming traditional methods on benchmark datasets. The practical implications of automated lipreading 

extend beyond accessibility technology to include biometric identity verification, security surveillance, and enhanced 

communication aids for individuals with hearing impairments. This paper provides insights into the advancements, challenges, and 

future directions of visual speech recognition research, paving the way for innovative applications in diverse domains. 

KEYWORDS: Visual speech recognition, Lipreading, Human-computer interaction, Accessibility technology, Biometric security 

systems, Noisy environments, Contextual information, Hearing-impaired individuals, Machine learning techniques, Silent dictation, 

Deep learning architecture, Conv3D layers, Bidirectional LSTM layers, Spatiotemporal feature extraction, Sequence modeling, 

Communication aids 

 

INTRODUCTION 

The topic of visual speech recognition, sometimes referred to 

as lipreading, is gaining increasing focus. It is an ideal 

addition to audio-based voice recognition, making it possible 

to silently dictate in public places like offices and busy 

environments. Applications like enhanced hearing aids and 

biometric authentication can also benefit from it. The field of 

lipreading brings together the developments from the 

computer vision and speech recognition communities.  

Lipreading is essential to human communication and speech 

processing, as evidenced by the McGurk effect, which occurs 

when one phoneme's audio is dubbed on top of a video of 

someone speaking a separate phoneme, a third phoneme is 

perceived.       

Lipreading is a famously challenging ability for humans, 

particularly when context is not available. Apart from the lips 

and occasionally the tongue and teeth, the majority of 

lipreading actuations are latent and challenging to distinguish 

without context. For instance, Fisher lists five categories of 

visemes—visual phonemes—among the twenty-three initial 

consonant phonemes that people frequently misinterpret 

when they watch a speaker's mouth. For final consonant 

phonemes, observations were similar, and many of them were 

asymmetrically confused. 

As a result, human lipreading is not very good. Hearing-

impaired individuals only attain an accuracy of 17±12% even 

for a restricted subset of 30 monosyllabic words and 21±11% 

for 30 complex words. Automating lipreading is therefore a 

key objective. With applications in biometric identity, 

security, quiet movie processing, public space dictation, 

enhanced hearing aids, and speech recognition in noisy 

surroundings, machine lipreaders hold great practical 

promise. 

Visual and audio-visual speech recognition techniques can be 

divided into two categories: (i) those that mimic words and 

(ii) those that mimic visemes, that is, sets of visually 

indistinguishable phonemes that correspond to visual units. 

While the latter is better suited for sentence-level 

classification and large vocabulary continuous speech 

recognition (LVCSR), the former is thought to be more 

https://doi.org/10.47191/etj/v9i05.08


“Deep Learning Based Lipreading for Video Captioning” 

3936                                                                                  Sankalp Kala1, ETJ Volume 9 Issue 05 May 2024 

 

appropriate for tasks like isolated word identification, 

classification, and detection.  

 

RELATED WORKS 

Deep learning is not used in most lipreading research 

currently in progress. This kind of work necessitates the use 

of manual vision pipelines, extensive frame preprocessing to 

extract image data, or temporal frame preprocessing to extract 

video information (such as movement detection or optical 

flow).  

The first visual-only sentence-level lipreading using hidden 

Markov models (HMMs) in a small dataset utilising hand-

segmented phones was done by Goldschen et al. (1997). 

Eventually, using the IBM ViaVoice (Neti et al., 2000) 

dataset, Neti et al. (2000) were the first to do sentence-level 

audiovisual speech recognition utilising an HMM in 

conjunction with hand-engineered features. The authors 

combine visual and auditory elements to enhance speech 

recognition performance in noisy conditions. The dataset, 

which is not publicly accessible, includes 17111 utterances 

from 261 speakers for training (about 34.9 hours). As said, 

because their visual-only findings are used for rescoring the 

noisy audio-only lattices, they cannot be taken as visual-only 

recognition. Using a similar methodology, Potamianos et al. 

(2003) report speaker independent and speaker adapted WER 

of 91.62% and 82.31% in the same dataset, respectively, and 

38.53% and 16.77% in the related DIGIT corpus, which 

comprises digit-based phrases. 

Additionally, using an LDA-transformed version of the 

Discrete Cosine Transforms of the mouth regions in an 

HMM/GMM system, Gergen et al. (2016) employ speaker-

dependent training. With a speaker-dependent accuracy of 

86.4%, this study maintains the prior state-of-the-art on the 

GRID corpus. As stated in (Zhou et al., 2014), generalisation 

across speakers and the extraction of motion features are 

regarded as outstanding problems.  

Deep learning classification: There have been multiple 

attempts in the past few years to use deep learning for 

lipreading. All previous methods, however, simply classify 

words or phonemes; in contrast, the model predicts entire 

sentence sequences. Various methods have been proposed for 

this purpose, such as learning multimodal audio-visual 

representations (Ngiam et al., 2011; Sui et al., 2015; 

Ninomiya et al., 2015; Petridis & Pantic, 2016), learning 

visual features for word and/or phoneme classification 

(Almajai et al., 2016; Takashima et al., 2016; Noda et al., 

2014; Koller et al., 2015), or combinations of these 

(Takashima et al., 2016). Numerous of these methods are 

similar to the early advancements made in using neural 

networks for speech recognition's acoustic processing 

(Hinton et al., 2012). 

For word classification, Chung & Zisserman (2016a) suggest 

using VGG-based spatial and spatiotemporal convolutional 

neural networks. The word-level dataset BBC TV (333 and 

500 classes) is used to analyse the designs; nonetheless, it has 

been revealed that their spatiotemporal models lag behind the 

spatial structures by an average of about 14%. Furthermore, 

their models don't try to predict sentences-level sequences 

and they can't deal with varied sequence lengths. 

Using an LSTM for 10-phrase classification on the OuluVS2 

dataset and a non-lipreading task, Chung & Zisserman train 

an audio-visual max-margin matching model to learn 

pretrained mouth characteristics. 

While introducing LSTM recurrent neural networks for 

lipreading, Wand et al. (2016) do not address speaker 

independence or sentence-level sequence prediction. 

Using a VGG pre-trained on faces, Garg et al. (2016) 

categorise words and phrases from the MIRACL-VC1 dataset 

(consisting of just 10 words and 10 phrases). Their best 

recurrent model, however, is not trained concurrently; 

instead, it is learned by first freezing the VGGNet parameters 

and then the RNN. Their best model performs poorly on both 

of these 10-class classification tests, achieving only 56.0% 

word and 44.5% phrase classification accuracy. 

Without recent developments in deep learning, many of 

which have taken place in the setting of automated speech 

recognition (ASR), the field would not be where it is now 

(Graves et al., 2006; Dahl et al., 2012; Hinton et al., 2012). 

The shift from deep learning as an ASR component to deep 

ASR systems trained end-to-end was driven by the 

connectionist temporal classification loss (CTC) of Graves et 

al. (2006) (Graves & Jaitly, 2014; Maas et al., 2015; Amodei 

et al., 2015). As previously indicated, recent advancements in 

lipreading have paralleled those in ASR, albeit without 

reaching the stage of sequence prediction. 

The majority of lipreading work was done using hand-

engineered features, which were often modelled using an 

HMM-based pipeline, until deep learning became popular. 

Additionally, spatiotemporal descriptors like SVM classifiers 

and active appearance models and optical flow have been 

presented. Deep learning techniques are being used in more 

recent research to either extract "deep" features or construct 

end-to-end structures. A 21% relative improvement over a 

baseline multi-stream audio-visual GMM/HMM system was 

reported in, where Deep Belief Networks were used for 

audio-visual recognition. Uses Deep Autoencoder to extract 

bottleneck features. An LSTM backend is used to train the 

entire system by concatenating the bottleneck characteristics 

with DCT features.  

Although there are many lipreading datasets (AVICar, 

AVLetters, AVLetters2, BBC TV, CUAVE, OuluVS1, 

OuluVS2), most of them are too small or only contain single 

words (Zhou et al., 2014; Chung & Zisserman, 2016a). The 

GRID corpus (Cooke et al., 2006) is an exception. It consists 

of audio and video recordings of 34 speakers who generated 

34,000 utterances in total over 28 hours, or 1000 sentences 

each speaker. The state-of-the-art results in each of the 

primary lipreading datasets are compiled in Table 1. 
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Since the GRID corpus is the largest and contains the most 

data, we utilise it to assess our model. The command(4) + 

color(4) + preposition(4) + letter(25) + digit(10) + adverb(4) 

sentences are taken from the following basic grammar, where 

the number indicates the number of word possibilities for 

each of the six word categories. 64000 possible phrases can 

be created by combining the following categories: {bin, lay, 

place, set}, {blue, green, red, white}, {at, by, in, with}, 

{A,...,Z}\{W}, {zero,..., nine}, and {again, now, please, 

soon}. For instance, the data contains the sentences "place red 

at C zero again" and "set blue by A four please." 

 

DATASET 

The GRID corpus consists of audio and video recordings of 

34 speakers who generated 1000 sentences apiece, over the 

course of 28 hours and 34000 sentences. The GRID dataset 

was gathered in a controlled environment to guarantee its 

quality and consistency. Videos of speakers speaking words 

and phrases in front of a camera make up the content. To 

capture minute lip movements, high-resolution videos are 

captured. 

Variability in speakers, vocabulary, and environmental factors 

are all included in the GRID dataset. The dataset includes 

many speakers of various ages, genders, and nationalities, 

guaranteeing that lipreading systems can adapt to speaker 

variances. Furthermore, the dataset includes both uncommon 

and common words and phrases in its wide vocabulary. 

Incorporating environmental factors like fluctuating lighting 

and ambient noise enhances the resilience of lipreading 

algorithms to real-world scenarios. 

The GRID dataset includes annotations for every video that 

include the corresponding spoken words or phrases. For the 

purpose of developing and assessing lipreading models, these 

annotations offer ground truth labels. The dataset might also 

contain other annotations, including speaker identities and 

timestamps for alignment with audio signals. 

The GRID dataset is used as a reference to assess how well 

lipreading algorithms function. This dataset is used by 

researchers to train their models and evaluate how well they 

can identify spoken words just from visual clues. The dataset 

makes it easier to compare various lipreading techniques and 

promotes developments in the area. 

Occlusions, variability in lip forms and movements, and 

ambiguity in visual clues make lipreading a difficult 

undertaking. Videos with varying degrees of difficulty are 

included in the GRID dataset, which helps to capture some of 

these difficulties. This makes it possible for researchers to 

create lipreading systems that are more reliable, accurate, and 

adaptable to different environments. 

The GRID dataset might contain corresponding audio 

recordings of the spoken words or sentences in addition to 

video recordings of lip movements. Researchers can 

investigate the interaction between auditory signals and 

visual lip movements in the context of speech recognition 

with the help of this multi-modal data. Additionally, it enables 

research on audio-visual fusion methods, which integrate 

lipreading with audio-based speech recognition systems to 

enhance overall efficiency. 

Phonemes, syllables, and words are only a few of the many 

phonetic units that are frequently covered by the GRID 

dataset. Researchers can assess lipreading systems at various 

granularities, ranging from basic phonetic recognition to 

word-level interpretation, thanks to this thorough coverage. It 

also makes research on the connection between phonetic 

categories in spoken language and visual articulatory 

characteristics easier.  

Typically, when evaluating lipreading algorithms on the 

GRID dataset, researchers employ standard assessment 

metrics. Word error rate (WER), phoneme error rate (PER), 

accuracy, and confusion matrices are a few examples of these 

measurements. Through the quantitative assessment of 

lipreading systems' accuracy and resilience, scientists can 

pinpoint opportunities for advancement and create more 

efficient algorithms. 

There are uses for the GRID dataset outside of lipreading 

studies. It can be applied to surveillance systems, human-

computer interaction, and assistive technologies for the deaf. 

For instance, by analysing lip movements for speech 

recognition, lipreading technology incorporated into smart 

devices or security systems could improve security measures 

or enable hands-free communication. 

The GRID dataset frequently highlights speaker diversity to 

guarantee that lipreading models perform well in a variety of 

demographic contexts. This diversity could include 

differences in language background, age, ethnicity, and 

accent. The inclusion of speakers with varying backgrounds 

in the dataset enhances the resilience and usability of 

generated models by reflecting the real-world variety 

observed in lipreading applications. 

Complex temporal dynamics are displayed in lip movements, 

which transmit important information for speech detection. 

Annotations or features that record the dynamics of lip 

opening and shutting, transitions between phonetic units, and 

temporal alignments with matching audio signals are among 

the temporal elements of lip motions included in the GRID 

dataset. Understanding the synchronisation of the visual and 

auditory modalities in speech perception can be gained 

through an analysis of these temporal patterns. 

Data enrichment approaches are frequently utilised by 

researchers on the GRID dataset to enhance the generalisation 

and robustness of lipreading models. Using these techniques, 

the original videos are transformed by employing various 

techniques like scaling, rotation, cropping, and noise injection 

to create new training examples.  
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PROPOSED MODEL 

Convolutional 3D (Conv 3D) 

A key component of deep learning systems intended to handle 

volumetric data—typically in the context of video analysis, 

medical imaging, or spatiotemporal data—is convolutional 

3D, or Conv3D. Conv3D functions similarly to Conv2D, its 

2D equivalent, but it can analyse sequences of 3D volumes 

across time since it extends the convolution operation into the 

temporal dimension. Conv3D can now record spatial and 

temporal information at the same time thanks to this addition, 

which makes it possible to simulate dynamic changes in 

volumetric data or video frames over time. Conv3D 

operations involve convolving a set of learnable filters 

(kernels) with the input tensor while moving over time steps 

and all three dimensions (width, height, and depth). Local 

areas of the input volume are used by each filter to extract 

features, creating feature maps that illustrate various facets of 

the input data. To add non-linearity to the network, these 

feature maps are subjected to non-linear transformations 

using activation functions such as ReLU (Rectified Linear 

Unit). Furthermore, the feature maps are frequently down-

sampled using pooling procedures like max pooling and 

average pooling, which lower the spatial dimensions and 

computational complexity while keeping the most important 

information. Conv3D layers are essential parts of many deep 

learning systems, such as action recognition, video 

captioning, video categorization, and medical image analysis. 

They make neural networks invaluable for applications 

demanding volumetric data analysis across time by enabling 

them to understand spatiotemporal patterns and 

dependencies. Conv3D layers are essential parts of many 

deep learning systems, such as action recognition, video 

captioning, video categorization, and medical image analysis. 

They make neural networks invaluable for applications 

demanding volumetric data analysis across time by enabling 

them to understand spatiotemporal patterns and 

dependencies.  

They excel at analysing video sequences, medical scans, 

simulations, and other types of 3D data across time because 

of their capacity to concurrently collect spatial and temporal 

aspects. Conv3D's flexibility in handling various input sizes 

and shapes, as well as the resolutions and frame rates that are 

frequently seen in real-world datasets, is one of its main 

features. Conv3D layers can handle a wide range of 

applications thanks to their flexibility, from medical imaging 

volumes with variable spatial dimensions to high-definition 

films. 

Filters, also known as kernels, move across the input volume 

in Conv3D operations along the temporal dimension (frames 

or time steps) and the three spatial dimensions (width, height, 

and depth). Conv3D's sliding window method makes it 

possible to consistently extract features from various input 

data regions, which makes it easier to identify temporal 

dynamics and spatial patterns. The convolution process 

creates feature maps that highlight pertinent spatial-temporal 

information by multiplying the filter weights element-wise by 

the input tensor and then summarising the results. 

Conv3D layers are also frequently used in conjunction with 

activation functions like ReLU (Rectified Linear Unit) to give 

the network non-linearity and help it understand intricate 

correlations in the input. Furthermore, the most prominent 

features are retained when downsampling the feature maps 

using pooling layers like max pooling or average pooling. 

This lowers computing complexity and prevents overfitting. 

Conv3D layers are also frequently used in combination with 

other deep learning elements like convolutional neural 

networks (CNNs) or recurrent neural networks (RNNs) to 

create more complex structures that can process hierarchical 

features or sequential input. For instance, recurrent layers 

such as GRU (Gated Recurrent Unit) or LSTM (Long Short-

Term Memory) can be placed after Conv3D layers in video 

classification tasks in order to capture long-range temporal 

dependencies. 

Conv3D layers are essential components of the deep learning 

arsenal since they enable the analysis and interpretation of 

intricate spatiotemporal patterns in volumetric data over time. 

Because of their adaptability and efficiency, they have been 

widely used in a wide range of applications, propelling 

breakthroughs in a variety of industries, including robotics, 

computer vision, and medical imaging. Conv3D layers will 

continue to be at the forefront of deep learning development, 

making it possible to create increasingly complex models that 

can comprehend and draw conclusions from dynamic 3D 

input streams. 

Rectified Linear Activation Unit (ReLU)  

A key component of contemporary deep learning 

architectures, the Rectified Linear Unit (ReLU) activation 

function is well-known for its ease of use, economy, and 

potency in neural network training. ReLU adds non-linearity 

to the network by directly outputting the positive input and 

zero otherwise. ReLU is able to alleviate the vanishing 

gradient issue that is frequently present with conventional 

activation functions such as sigmoid or tanh, which 

experience gradient saturation at extreme input values. This 

is made possible by the straightforward thresholding 

procedure. ReLU speeds up optimisation by enabling faster 

convergence during training, which in turn allows deeper 

neural networks to be trained with better performance. A key 

component of contemporary deep learning architectures, the 

Rectified Linear Unit (ReLU) activation function is well-

known for its ease of use, economy, and potency in neural 

network training. ReLU adds non-linearity to the network by 

directly outputting the positive input and zero otherwise. 

ReLU is able to alleviate the vanishing gradient issue that is 

frequently present with conventional activation functions 

such as sigmoid or tanh, which experience gradient saturation 

at extreme input values. This is made possible by the 

straightforward thresholding procedure. ReLU speeds up 
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optimisation by enabling faster convergence during training, 

which in turn allows deeper neural networks to be trained 

with better performance.  

ReLU's computational efficiency is one of its main 

advantages because it simply requires a straightforward 

thresholding operation to set negative inputs to zero. ReLU's 

computational lightweight nature stems from its simplicity 

when compared to more intricate activation functions. This 

leads to shorter training and inference times, which are 

critical for large-scale deep learning applications. ReLU's 

ability to zero out negative values while maintaining positive 

ones also helps with feature representation, which helps the 

network concentrate on significant patterns and squelch 

unimportant data. 

ReLU has also been discovered to mitigate the vanishing 

gradient issue, which can cause training deep neural networks 

to be more difficult. The vanishing gradient problem arises 

when gradients get very small during backpropagation, which 

makes it difficult to update the weights of the network and 

slows down learning. ReLU helps prevent gradient saturation 

by giving positive inputs a non-zero gradient, which promotes 

more effective gradient flow and quicker convergence during 

training. Due in large part to this characteristic, deep neural 

networks with multiple layers have been successfully trained, 

leading to the creation of highly expressive models that are 

able to extract complex patterns from complicated input. 

All things considered, the ReLU activation function has 

transformed the field of deep learning and is a fundamental 

component of neural network architectural design. Because 

of its ease of use, great computational efficiency, and capacity 

to alleviate the vanishing gradient issue, it has become a vital 

resource for both practitioners and researchers, facilitating the 

creation of scalable and incredibly successful deep learning 

models for a variety of use cases. 

Maxpooling 3D  

In deep learning systems, especially those intended to handle 

volumetric data with temporal dynamics, such video 

sequences or 3D medical scans, MaxPooling3D is an 

essential operation. MaxPooling3D does spatial 

downsampling over three dimensions (width, height, and 

depth) as well as across time steps, building on the concepts 

of its 2D version, MaxPooling. The input volume is divided 

into non-overlapping parts for the purpose of this 

downsampling process, and only the maximum value within 

each zone is kept. By choosing the maximum activation, 

MaxPooling3D efficiently reduces the spatial dimensions of 

the volume, manages the computational burden of succeeding 

layers, and maintains the most prominent features while 

eliminating redundant information. 

Furthermore, by assisting in the enforcement of translational 

invariance, MaxPooling3D strengthens the network's 

resistance to spatial translations or distortions in the input 

data. While MaxPooling3D is widely used and very effective, 

it has several drawbacks. The downsampling procedure might 

lead to a loss of fine-grained data and impair the network's 

performance, particularly in tasks that demand accurate 

localization or fine-grained recognition. This is one potential 

downside. In order to address this problem, methods that 

provide better performance in specific situations—like 

dilated convolutions or spatial pyramid pooling—have been 

suggested as substitutes for the conventional MaxPooling3D.  

A key element of deep learning architectures intended for 

volumetric data processing, particularly in applications 

requiring video analysis, medical imaging, and 

spatiotemporal data analysis, is MaxPooling3D, an extension 

of the MaxPooling operation to three dimensions. 

MaxPooling3D divides the input volume into non-

overlapping sections across time steps and in three 

dimensions: width, height, and depth. MaxPooling3D keeps 

only the maximum value within each zone and discards the 

remainder. This procedure helps to control computational 

complexity and lowers the chance of overfitting by efficiently 

decreasing the spatial dimensions of the input volume while 

preserving the most prominent features. 

Enforcing translational invariance makes the network more 

resilient to spatial translations or distortions in the input data, 

which is one of MaxPooling3D's main advantages. 

MaxPooling3D selects the largest activation within each 

zone, therefore it ignores small differences in temporal or 

spatial position in order to capture the most important 

information. This characteristic is especially helpful for jobs 

where the precise spatial placement of elements may 

fluctuate, such object detection in films or 3D form analysis. 

It's crucial to remember that MaxPooling3D has certain 

restrictions. The downsampling process's possible downside 

is the loss of spatial information. MaxPooling3D may exclude 

fine-grained information that might be important for specific 

tasks, including accurate item localization or border 

identification, because it simply keeps the maximum 

activation inside each zone. Furthermore, information loss 

may result from the fixed-size pooling regions utilised in 

MaxPooling3D not being the best at capturing features at 

various scales or resolutions. 

Alternative pooling algorithms, including average pooling, 

which computes the average activation within each region 

rather than the maximum, have been proposed to solve these 

constraints. Furthermore, more adaptable pooling regions are 

made possible by methods like fractional or adaptive pooling, 

which help the network adjust to varying geographic scales 

or aspect ratios in the input data.  

All things considered, MaxPooling3D is still a useful 

instrument in the deep learning toolbox since it offers a 

method for feature selection and spatial downsampling in 

volumetric data. It may not be appropriate in every situation, 

but many deep learning systems for 3D data processing 

require it because of its ability to enforce translational 

invariance and lower computing complexity. 
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Time Distributed Layer 

In deep learning architectures designed for sequential data 

processing, such videos, time series, or natural language 

sequences, the TimeDistributed layer is an essential part. Its 

main purpose is to essentially extend the operation across the 

time dimension by applying the same operation 

independently to each time step of the input sequence. When 

working with sequential data, this procedure is very helpful 

since it guarantees consistent information processing at 

various time steps, which helps the network efficiently 

capture temporal dependencies and patterns. For instance, the 

TimeDistributed layer makes it easier to extract spatial-

temporal characteristics from the full sequence when 

processing videos by enabling the application of 

convolutional or recurrent algorithms to each frame 

separately.  

Furthermore, the TimeDistributed layer makes it possible to 

easily incorporate different kinds of layers—like fully 

connected layers, dropout layers, or batch normalisation 

layers—within recurrent or convolutional architectures and 

guarantees that these operations are performed uniformly 

throughout all time steps. In order to preserve temporal 

coherence and make sure the network can infer meaningful 

representations from sequential data, this consistency is 

essential. 

Its main role is to separately apply a certain operation or layer 

to every time step in a sequence. This capacity is especially 

helpful in situations where temporal relationships and 

patterns are essential to comprehending the data, like time 

series forecasting, video analysis, and natural language 

processing jobs.  

For example, the TimeDistributed layer can be used to 

independently apply recurrent neural network (RNN) layers, 

like Gated Recurrent Unit (GRU) or Long Short-Term 

Memory (LSTM), to each word or token in a sentence in the 

context of natural language processing. This allows the 

network to acquire meaningful representations of the text 

over time and capture the sequential nature of language, 

which is crucial for tasks like named entity recognition, 

machine translation, and sentiment analysis. 

Similarly, convolutional neural network (CNN) operations 

can be applied individually to each frame of a video sequence 

using the TimeDistributed layer in video analysis 

applications. As a result, the network is able to extract spatial-

temporal information from the footage, registering changes in 

the scene's dynamics, object appearances, and motion 

patterns. 

After then, these traits can be combined and handled further 

down the line for jobs like anomaly detection, action 

identification, and video captioning. 

In addition, the TimeDistributed layer makes it easier to 

combine different kinds of layers or algorithms in 

convolutional or recurrent architectures. In order to guarantee 

that these changes are done uniformly throughout all time 

steps of the sequence, this can involve adding fully linked 

layers, dropout layers, batch normalisation layers, or even 

custom procedures. Maintaining temporal coherence and 

enabling the network to efficiently learn meaningful 

representations from sequential data depend on this 

consistency. 

All things considered, the TimeDistributed layer is essential 

to deep learning models intended for sequential data 

processing because it makes it possible to create reliable and 

effective architectures in a variety of fields. The network can 

detect temporal connections and trends thanks to its capacity 

to extend operations across time steps, which opens the door 

to more precise and perceptive assessments of sequential 

data. 

BiDirectional Long Short Term Memory (BiLSTM)  

Recurrent neural network (RNN) models have advanced 

significantly with the Bidirectional Long Short-Term 

Memory (BiLSTM) architecture, especially for sequential 

data analysis applications including speech recognition, 

natural language processing, and time series prediction. The 

main innovation of BiLSTM is its forward- and backward-

processing capability, which allows it to concurrently gather 

context from the past and the future. Conventional LSTM 

networks are unidirectional, which means that each time 

step's predictions are solely based on information from the 

past. However, BiLSTM efficiently captures dependencies 

from both directions by using two distinct LSTM layers, one 

processing the sequence ahead in time and the other 

processing it backward.  Better comprehension and 

representation of the input sequence are made possible by the 

network's ability to use future context during training thanks 

to this bidirectional processing. Consequently, BiLSTM 

models perform exceptionally well in tasks like speech 

recognition, named entity recognition, and sentiment analysis 

where context from both past and future input is crucial. 

Furthermore, because BiLSTM designs can dynamically 

modify their processing in response to the input data, they are 

well-suited for managing variable-length sequences. 

BiLSTM models have proven to perform better in many 

sequential data applications than unidirectional LSTMs, 

despite their computational cost. As a result, they are a key 

component in the creation of sophisticated deep learning 

systems for sequential data processing. 

Because of their exceptional capacity to capture bidirectional 

dependencies, bidirectional long short-term memory 

(BiLSTM) networks are a potent extension of conventional 

recurrent neural networks (RNNs) and have emerged as a key 

component in sequential data processing applications. The 

capacity of BiLSTMs to concurrently collect past and future 

context is a noteworthy feature, as it allows the models to 

make well-informed decisions at each time step based on a 

thorough grasp of the input sequence. This bidirectional 

processing is especially helpful for jobs like machine 

translation, where it is essential to comprehend a word's 



“Deep Learning Based Lipreading for Video Captioning” 

3941                                                                                  Sankalp Kala1, ETJ Volume 9 Issue 05 May 2024 

 

context in both the sentence before it and the sentence after it 

in order to translate it accurately. Because of their exceptional 

capacity to capture bidirectional dependencies, bidirectional 

long short-term memory (BiLSTM) networks are a potent 

extension of conventional recurrent neural networks (RNNs) 

and have emerged as a key component in sequential data 

processing applications. The capacity of BiLSTMs to 

concurrently collect past and future context is a noteworthy 

feature, as it allows the models to make well-informed 

decisions at each time step based on a thorough grasp of the 

input sequence. This bidirectional processing is especially 

helpful for jobs like machine translation, where it is essential 

to comprehend a word's context in both the sentence before it 

and the sentence after it in order to translate it accurately.  

The capacity of BiLSTMs to process input sequences 

concurrently in both forward and backward directions, 

allowing them to record dependencies from both past and 

future time steps, is one of their main advantages. Because of 

its ability to process information in both directions, 

bidirectional long short-term memory (BiLSTMs) are 

especially useful for tasks that require context from both 

directions, like speech recognition, machine translation, and 

sentiment analysis. 

For instance, in sentiment analysis, figuring out a sentence's 

sentiment frequently necessitates taking into account both the 

words that come before and after the target word. In this 

situation, BiLSTMs perform well because they use input from 

both directions, which allows for more precise sentiment 

predictions. Similar to this, in machine translation, the ability 

of the model to produce fluid and contextually appropriate 

translations is improved by capturing context from both the 

source and target languages. 

Moreover, BiLSTMs can handle sequences of varying lengths 

with ease, which makes them flexible for a variety of uses. 

They can efficiently model sequences with irregular time 

intervals or variable lengths, such as speech signals or 

biomedical data, because they can dynamically alter their 

processing according on the incoming data.  

Although BiLSTMs are more computationally complex than 

unidirectional LSTMs, improvements in hardware 

acceleration and optimisation methods have made BiLSTMs 

practical for large-scale application training and deployment. 

To improve their performance and scalability across various 

tasks and domains, BiLSTM variants have also been 

developed, such as stacked BiLSTMs and attention-based 

BiLSTMs. 

All things considered, BiLSTMs have become a potent deep 

learning technique with improved capacity for identifying 

bidirectional connections in sequential data. Their 

adaptability and capacity to manage variable-length 

sequences have rendered them invaluable in an extensive 

array of uses, propelling noteworthy progress in domains like 

speech recognition, time series analysis, and natural language 

processing. 

Dropout Layer  

An essential part of deep learning architectures, the dropout 

layer is well known for its ability to prevent overfitting and 

enhance neural networks' capacity for generalisation. 

Dropout functions by randomly deactivating a portion of the 

network's neurons with a predetermined probability, usually 

set between 0.2 and 0.5, thereby "dropping out" those neurons 

from the computation graph during the training phase. 

Dropout creates a kind of regularisation by randomly masking 

neurons during training. This keeps the network from 

becoming overly dependent on particular characteristics or 

neurons, which forces it to acquire more resilient and all-

encompassing representations of the data. By encouraging 

neurons to become more resilient and autonomous, this 

stochastic regularisation strategy lowers co-dependency 

among them and improves generalisation to unseen input. 

Due to the model's propensity to retain noise or outliers in the 

training set, overfitting is a typical worry in deep neural 

networks with many parameters, where dropout is especially 

useful. By using Dropout, the model gains the ability to 

forecast more reliably, which enhances its performance on 

unknown inputs and improves its generalisation in general. 

Dropout is only used during training, despite its effectiveness, 

because its purpose is to increase noise and encourage 

exploration during learning. All neurons are kept during 

inference, but in order to maintain consistency with the 

training phase, their activations are scaled by the dropout rate. 

All things considered, Dropout is an essential regularisation 

strategy in the deep learning toolkit that provides a 

straightforward yet efficient way to enhance neural networks' 

capacity for generalisation and reduce the likelihood of 

overfitting in intricate models across a range of domains. 

Dense Layer (Softmax Activation Function)  

A key element of many neural network topologies, especially 

those intended for multiclass classification problems, is the 

Dense layer with Softmax activation. Dense layers, 

sometimes referred to as completely connected layers, are 

defined by the fact that every neuron in one layer is connected 

to every other neuron in the layer below it. This property 

makes it possible for information to propagate across the 

network without any restrictions on connectivity patterns. 

The Dense layer converts the raw output of the previous layer 

into a probability distribution over several classes when 

paired with the Softmax activation function. By 

exponentiating the input values and dividing by their sum, the 

Softmax function normalises them into probabilities and 

guarantees that the sum of the output probabilities equals 1. 

This facilitates decision-making in classification problems by 

allowing the network to understand the Dense layer's output 

as the likelihood or confidence values assigned to each class. 

Furthermore, by boosting the probability of the most likely 

classes and suppressing the probabilities of the less likely 

classes, the Softmax function helps the model to produce 

precise and assured predictions. For multiclass classification 
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tasks, such text categorization, sentiment analysis, or picture 

classification, where the objective is to assign an input 

instance to one of many predetermined classes, the Dense 

layer with Softmax activation is frequently employed as the 

output layer in neural networks. Because of its adaptability, 

ease of use, and interpretability, it is a mainstay of deep 

learning architectures, facilitating the creation of precise and 

effective models. 

The Dense layer with Softmax activation is frequently used 

in the context of neural language models and generative 

models, in addition to its function in multiclass classification. 

For example, this architecture is frequently used at the output 

layer of neural language models to predict the subsequent 

word in a sequence based on the words that have come before 

it in the input sequence. The Softmax function enables the 

model to generate a variety of contextually relevant word 

sequences, which enables tasks like machine translation, text 

synthesis, and speech recognition. The model does this by 

outputting a probability distribution across the vocabulary. 

Additionally, the dense layer with Softmax activation can be 

used in generative models such as variational autoencoders 

(VAEs) and generative adversarial networks (GANs) to 

generate probabilistic outputs that indicate the probability of 

generating specific data samples. By doing this, the model is 

able to produce new samples that are similar to the 

distribution of training data and learn the underlying 

probability distribution of the data. For instance, in order to 

generate realistic images or other data samples, the generator 

network in GANs usually uses a dense layer with Softmax 

activation at the output. 

Additionally, the Dense layer with Softmax activation is 

frequently used with loss functions such categorical cross-

entropy, which gauges how different the actual class label 

distribution is from the expected probability distribution. The 

model learns to produce outputs that closely resemble the 

ground truth labels or data distributions and makes accurate 

predictions by fine-tuning the network's parameters to 

minimise this loss. 

All things considered, the Dense layer with Softmax 

activation is a versatile and essential component of many 

deep learning architectures, allowing for the accurate 

categorization of input data into many classes, the modelling 

of complex data distributions, and the creation of diverse 

sequences. Its efficacy, interpretability, and simplicity make 

it a fundamental component in the creation of cutting-edge 

deep learning models for a variety of applications and 

domains. 

 

 

Convolutional Layers (Conv3D): The initial layers utilize 

3D convolutional operations to extract spatio-temporal 

features from the input video frames. These convolutional 

filters analyze the video data in three dimensions: height, 

width, and time. The output shape of the first Conv3D layer 

is (75, 46, 140, 128), indicating the dimensions of the feature 

maps produced. 

Activation Layers (Activation): Following each 

convolutional operation, an activation function is applied to 

introduce non-linearity into the model. Activation functions 
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such as ReLU (Rectified Linear Unit) are commonly used to 

enhance the model's learning capability. 

Max Pooling Layers (MaxPooling3D): Max pooling 

operations are utilized to reduce the spatial dimensions of the 

feature maps while retaining the most significant information. 

This helps in decreasing computational complexity and 

controlling overfitting by performing spatial down-sampling. 

Time Distributed Layer (TimeDistributed): This layer 

applies the same operation to each time step of the input 

sequence independently. It is particularly useful when dealing 

with sequential data like videos, ensuring that the subsequent 

layers receive processed information from each frame 

consistently. 

Bidirectional LSTM Layers (Bidirectional): Bidirectional 

Long Short-Term Memory (LSTM) layers are employed to 

capture temporal dependencies in the input video sequence 

bidirectionally. This means the network processes the input 

sequence both forwards and backwards, enhancing its ability 

to understand the context and dynamics of the video frames. 

Dropout Layers (Dropout): Dropout is applied to prevent 

overfitting by randomly setting a fraction of input units to 

zero during training. This encourages the model to learn more 

robust features and reduces the likelihood of relying too 

heavily on specific inputs. 

Dense Layer (Dense): The final dense layer with a softmax 

activation function generates the output captions. It produces 

a probability distribution over a fixed vocabulary (in this case, 

41 classes) representing different words or phonemes that 

could be present in the captions. 

The objective of this model is to automatically generate 

textual captions for silent videos based on lipreading. By 

leveraging convolutional and recurrent neural network 

components, along with techniques like bidirectionality and 

dropout, the model can effectively learn to understand the 

visual cues of lip movements and convert them into 

meaningful textual descriptions of the spoken content in the 

video. 
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RESULTS 

 
We compute the word error rate (WER) to assess the model's 

and the baselines' performance. Hearing impaired people 

have a WER of 47.7%. the model is able to achieve a WER 

of 2.4%. 

 

Method Dataset Output Accuracy 

Fu et al. (2008) AVICAR Digits 37.9% 

Hu et al. (2016) AV Letter Alphabet 64.6% 

Papandreou et 

al. (2009) 

CUAVE Digits 83.0% 

Chung & 

Zisserman 

(2016a) 

OULU VS1 Phrases 91.4% 

Chung & 

Zisserman 

(2016b) 

OULU VS2 Phrases 94.1% 

Chung & 

Zisserman 

(2016c) 

BBC TV Words 65.4% 

Gergen et al. 

(2016) 

GRID Words 86.4% 

LipNet (2017) GRID Sentences 95.2% 

Novel Model GRID Sentences 97.6% 64% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fu et al. demonstrated their lipreading approach with an 

accuracy of 37.9% on the AVICAR dataset, a significant 

endeavor that laid the groundwork for subsequent research in 

the field. Their method, while marking a notable 
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achievement, also underscored the challenges inherent in 

extracting meaningful information solely from visual cues in 

the context of speech recognition. Building upon this 

foundation, Papandreou et al. made substantial strides in 

lipreading technology by achieving an impressive accuracy 

of 83.0% on the CUAVE dataset. Their work not only 

showcased the potential of automated lipreading but also 

highlighted the importance of dataset quality and diversity in 

training robust models. Moreover, Gergen et al. contributed 

to the advancement of lipreading technology with their 

method achieving an accuracy of 86.4% on the GRID corpus, 

further pushing the boundaries of what was deemed 

achievable in the field. Their success emphasized the 

significance of incorporating innovative techniques and 

methodologies to tackle the complexities of lipreading tasks. 

Additionally, Chung & Zisserman's breakthrough 

performance on the OuluVS1 and OuluVS2 datasets, with 

accuracies of 91.4% and 94.1% respectively, represented a 

significant leap forward in the pursuit of accurate visual 

speech recognition. Their achievements underscored the 

importance of dataset diversity and algorithmic innovation in 

pushing the limits of lipreading accuracy. Notably, their 

highest reported accuracy of 94.1% on the OuluVS2 dataset 

stands as a testament to the efficacy of their approach in 

handling diverse linguistic content and speaker variability. 

Method Accuracy (Unseen Speaker) 

Hearing Impaired Person 52.3% 

Novel Model 64% 

 
 

CONCLUSION 

The end-to-end paradigm does away with the requirement to 

first divide films into words in order to anticipate a sentence. 

It doesn't require an independently trained sequence model or 

hand-engineered spatiotemporal visual features. In addition, 

the model performs significantly better than a human 

lipreading baseline, with 4.8% WER and 4.1× greater 

performance. The literature on deep voice recognition 

indicates that additional data will only lead to better 

performance. This might be proved in further research by 

using the model on bigger datasets—like a sentence-level 

variation.  

Certain applications need the use of video alone, such as 

silent dictation. To broaden the scope of possible uses, this 

method might be implemented in a jointly trained audiovisual 

speech recognition model, where visual input helps provide 

robustness in chaotic surroundings.  
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