Engineering and Technology Journal e-ISSN: 2456-3358

Volume 08 Issue 11 November -2023, Page No.- 3048-3060 )(

DOI: 10.47191/etj/v8i11.15, I.F. — 7.136
© 2023,ETJ

Everant Journal
—‘— E da nib |
- I
| ] | '-’.-‘"

Forced Oscillations of a Plate Consisting of Ellipses and Circles of VVarious
Sizes with Complex Contours on Machine Parts

Aliyev Balakhan Haji oglu
Candidate of technical sciences, associate professor, doctoral student. Baku Engineering University, Associate Professor
Karimova Irada Murad daughter. Azerbaijan State Qil and Industry University.

ABSTRACT: The article considers forced oscillations of elastic plates in the multilinked area. The surface of the plate undergoes

actions of the disturbing force directed along the normal.

The task leads to solution of different kinds of differential equations satisfying to initial and boundary conditions of various type.
These equations are solved by the Bessel functions and through the method of the theory of functions with complex variables.
Thus, the article offers the general methodology to the solutions of the dynamics of the elastic plates that is under action of the

disturbing force.
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The relevance of the topic is unquestionable, since the
study of the dynamics of the viewed plate is of particular
importance in many fields of modern technology, including
in the development of space engines. Also, solving this
problem in a partially general form allows for easy solutions
for special cases. On the other hand, the issue of finding the
solution of the mathematical-physical equations of the
complex contour of the region with various boundary
conditions in multi-connected regions is always relevant. This
research work can be useful for graduate and postgraduate
students, teachers, researchers and engineers

Setting the issue.

Fig 1.

3%w(p,9, ~
NW(p,6,1) + 2* ZL2D = Gi(p,6,1)

The question of constructing a methodology for finding a
solution satisfying various boundary conditions on the
contours of the equation expressing the forced oscillations of
the multi-joint elliptical plate weakened by elliptical holes of
different orientations is considered. Assume that some of the
internal contours are free of any influence and others are
elastically fixed. The outer contour is immovably fixed.

Let's attach a polar coordinate system to each of the elliptic
contours (p_k,0 k) and to the outer contour (p,0) and take the
parallel and same direction of their polar axes. The equation
of the forced oscillations of the plate in the polar coordinate
system is as follows:

@

Here, W(p,0,t) is the inclination of the plate from the starting plane; A - Laplace operator
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dp* pdp p?06? (2)
At = E—‘; - h-plate thickness, y/g-mass density, G(p, 8, t)- exciting force to the plane of the plate,

t-time, D - is the cylindrical stiffness of the plate and

_ Eqh8
T 12(1-v2) ©)

calculated by the formula. Here, E1 is the Young's modulus of the plate material, v- Poisson's coefficient, the condition imposed on
the function q (p,0,t)- is that it can be divided into a series of functions during the specific oscillations of the plate. Elastic
reinforcement of internal contours can be homogeneous, elliptical tubes with cross-section thickness h1 fixed at the other end.

In this case, the reaction force

qi = —C;U(p,6,1) (4)
in the form of, where
C; = 7 ml(a; + b)h; + hf] i=T,m, (5)
Here, Ci — i- is the collapse coefficient of the i-th pipe, h1l- i- is the thickness of the i-th support pipe, m2 is the number of elastic
supports.
Let us denote the external contour L0, and the internal contours free of load — Lr il. Then a complex outline
L= LO + 221:11 Lr + Z:T;zl Lr (6)

Olar, so that m1+m2=m;m- is the number of all internal contours.
Let us write the following boundary condition:
a) Infixed external contour
aW(p,6,t)
W(p,0,0)l., = %| =0 )
tn

b) Since m1 internal contours are free from external influence, the bending and twisting moments on them are equal to zero, i.e.

2*W(p,6,t) 192W(p,0,t) 1 0*W(p,6,t)
M,|, =-D e TV 547 =0
n p p p p tn
_laMpe _ 33w (p,0,t) l(’)ZW(p,G,t) _1aw(p,6.0) _ i63W(p,9,t) _ _ i62W(p,9,t) _
(ap p 960 ) =-D [ ap3 p 9p3 p? ap + (2 V) p% 9pdav? (3 V) p3 062 tn =0

(8)

Here, Mp is bending, Mp6 — twisting moments, Qp — shearing force.
¢)The shear force on elastically fixed contours must balance with the reaction force. Given the rigid connection of the plate
to the support, the angle between the support (in our example, the support tube) and the external normals of the plate
surfaces changes. If transverse and torsional oscillations of the support are not taken into account, the following conditions
must be satisfied on these contours:

_ BWp,ot)  13°W(pbt) 1 33W(p,6t) 2 3w (pb.t) _
(aP - CrW(p: 91 t))tp - D {[ ap3 +; apz + p_Z apaez - p_3 692 ]tz - CT‘W(p' 9' t)ltz} - O

AW (p,0,t)

= =0 )

tn

Assume that at the beginning of the oscillation process, all points of the plate are not out of its plane, but the initial velocities

are a function of their positions in the plane, ie., V(p,0)=0. In this case the initial conditions
W(p,6,0) =0 ) Wpb.L) =V(p,0)

at  lt=o
canere. The function V(p,0) can also be sorted by eigenfunctions.
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Thus, the problem of investigating forced oscillations of a plate with elliptical holes is brought to the problem of finding a
solution that satisfies the boundary conditions (7), (8), (9) and initial conditions (10) in the multiple connection region of equation
(6).

It should be noted that the goal is to provide a method for solving problems.

Finding custom dances. Arguments are not written for simplicity.

To study specific oscillations, we choose q (p,0,0)=0, then (1) corresponding to the following figure

. 27
NW+ 2427 =0 (11)

Here, W - is an unknown function that characterizes the deviation of the plates from the plane state during the specific oscillation.
W

W=W"(p, 0)S5not (12)
If we look for it in the picture, we get from (11):
A*W* — 2tW* = 0, belo ki, A7 = A*n2 (12)
(12) solution of the equation
W* =3, W, (p, 0)S5n0 (13)

If we look for it, then from (11) we get:
a2 14 nA\? =
G *5a —) Ta= =0 19
Let E° be the unit differential operator. SOE°*W,, =I,. Then, by introducing the unit differentiation operator, equation (14) can be
separated into two second order ordinary differential equations:

a?w, |, 1dWy, n? N
ap? +;W— (p_2+11) wW,=0 (15)
a?w, | 1dWy, n? N
o (p—2+,11)wn =0 (16)
Let's substitute p = /11 . Then if we multiply (15) byA72 , and (16) by -A72 , we can get Bessel equations:
1
A’Wyp(a) | 1 dWy(a) n2\
da? ; da - (1 + ;) Wn(a) =0 (17)
A’Wyp(a) | 1 dWy(a) n2\
da? « da (1 - ;) Wn(a) =0 (18)

It is known that each solution of equations (17) and (18) is also a solution of equation (14), and equations (17) and (18) have no
common solutions that can satisfy both of them, except for the trivial solution. Therefore, the system of linearly independent
fundamental solutions of equations (17) and (18) should be built on the basis of the system of fundamental solutions of equation
(14). Equation (17) is modified by the following cylindrical function, the fundamental solutions of which are not linearly dependent
on each other:

Jn(A1, ), Nn (A4, p), Iy (A4, p), Kn (A4, p) (19)
Note that n must be an integer to satisfy the continuity condition. So, the function W(p,0,t) should take its previous value when it
completes the closed circuit.
Let's formally look for the solution of equation (12) in the following way:

W= X : [ *J (A, p)+C 1 (A p )I né+ }_J [B,f.u-/,. (A, 0,)+ DL K, (4, p, )hw\)':()‘\. +
vz Kol
) : '
-5 (B2, (4, 0,)+ DEK, (2, p, )06, |
P | (20)
(20) tonliyinin formallig1 onunla izah olunur ki , birinci diiz métariza daxilinds yazilmis ifads vo onun triqgonometrik vuruglari (p, 9)
sisteminds, qalanlari isa uygun olaraq (py, 8x) Vo (p;, 6,.) polyar koordinat sistemlorinds yazilmislar. Ona gors do W™ -nin ifadasini

konkret sistemdo yazmaq lazimdir. Qrafik toplama teoremindon istifads edirik. Bu teoremo asason:
Z, — 2,670 =rel?  z, —z,e =re”¢ (21)

the following equation is true if the conditions are satisfied and
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1211 > 122
Zy () e"'=Ept o Zy=p(21) 5 (22)eP® (22)

So, here Zv(z) — Jv (z) and Nv (z) can be any one of the functions. Z1 and Z2 are two different points of the complex plane.
According to that theorem, if conditions (21) are met and 1z11 > 1z2I
v (Ne™= X5t (—1)° Ly p (20, (22)e?? (23)
KV(r)eiVW:ZZ(;—oo Kv+p (Zl)lp (Zz)eipqo (24
In the matter under consideration
21:Zq+|ql_(e(p,l_( =2,m, q= 2,m, (25)
The distance between the centers of Igk -k and the g-th contours is the positive angle of the vector QW - 1gk with respect to the
polar axis of the kth system.

-
e
= ) ¥or

Fig. 2
Let us replace Zq:e_ga)q in equation (25). Here 0qt q-cu
The origin of the semi-axis of the ellipse is at the center of the outer ellipse located and polar axis with its major semi-axis it is the
smallest angle formed by the system with the polar axis.
+1,0 < Bq <g when

Sign 9, =
9N —1,—g<9q<0when
wq = Xq + iyglet it be x, %fa,ya =9, (26)
let's replace it. Then the canonical equation of the ellipse in the g-th system
X3, Yi _
a5+b5 =1 (27

when (26) transforms (27) ellipse

%2452 =b°
looks around.
|'Il.'lIII .
:’{ =g ol /7, q
4 the transformation Zk, the complex plane
e —
. L g . . tl9::]'” . ] .
is a spiral as much as the angle around the point , and then the post-rotation argument of Zq is the argument
2, g 6 + fﬂ, {, =x Ny,
of - ., 80 " happens. let's say.
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CD

] = = "g(ﬁﬁ' n H‘l’u}
In the third figure, from the OCD triangle ocC

CD= ()ng(gq + an ): x#!g(é}q . Hq“ ]

AB —Igg-'-

q°

From here

From the triangle OAB 04

ABT—"OAEgﬁ:f :Eq!‘gﬂq. AB:CD=yq =V,

From here we can write because.
o Rew )
; q
al’Cl‘ggq o ar(',g tg(O‘! + 9%
el q
(29)
= L, ‘_ = Rew, _4
Pa=tel=N% Ve e b
q q (30)

Thus, equation (25) can be written as:

pigm*' = 5q€!£?£{ + jq.k{:-'

raxgk

/11 —igqk
If we multiply both sides of this equation by its expression, we get:
]

i@, - 7 ~ "(‘( ok —éfl
Apie o 'Qk):)“llqk-('&pq)e )
lgk > p, d

A (’L p. krﬂ[ﬂp_@‘lﬂ} i i Zm[ (;Lj !qE}}F (1, ﬁ,ﬁ, kw{qﬂqi —§,_,}

= (1)

g -

)

Thus V=i expressions (21), (22) and (23) are written as follows:

o

TR CLRRE N A A G

p=sh (32)
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“n -(-) u\

Kn‘(_/"ﬁ F"A .}) ‘ : ZJ}\-'H/)(A /C/A [ tA‘ prll
. (33)
g
E’-" i qk
Multiplying these equalities, we get:
7 (1 Fon6, = 3172, (aigk ), (1.5, ln+ proz - P8
i€\ P L . ; (34)
: \ 8 ol R ‘ 1
(4 Yo 0 = Y1, \lak )1 (2. B, f \n+ P, - PO,
pe=s (35)
| ) - I- '. | =2 |[ - I
K, (2.0 f"n6, = 3 (-1 K, a1k}, (4.5, F \n+ PIo; - PO,
Al ; 3 (36)
e, J (I-‘*n o, ) : -
When we move 7797 from one system “ & &/ to another, we act in the same way. Therefore, to obtain the results of
¥ =111 ":1 1la ! s T}i f_
Vg i HE lr:|'.';! Lo
this transition, in relations (34), (35) and (36),
It is enough to replace 6 q with 6k, p q with p k, gk with pbk. Then we get the following relations:
Za(A, pg)5inN6q = X p=—oo(= 1P Zntp(4, Lig)p (A i)sin [(M + D) Prg — POi] 37)
I, (4, Pyq g?rfne = Z?:—oo In+p 4 qu)]p 4 pk)ggrf[(n + p)(pkq — pby] (38)
Kn()" pq)ggrfneq = Z;o=—00(_1)pKn+p (l, qu)]p (A, pk);?rf [(Tl + p)q)kq - pek] (39)
To change from the (p,0) system to the (pq,0q) or (pk,0k) system, we write (20) as follows:
Z=z4+e® (40)

We perform transformations (25)-(30) on Zk. Then the equation
A, pe™O=9) = A L. — (=2, py) e 1 CD-0k (1)
falls into the form of
Thus, according to the Graph theorem, we can accept v=n and write when Ak>p k.

Za(Apg)e™ "™ = 55 (= 1)PZnso(A g M (A )™ (42)
If we multiply each side of this equation by e™® , (42) will look like this:
Za(A, pg)sinn8 = X p-— oo (= 1)PZnsp(, Iieg ) (A pi)sin [(0 + D) Prq — PO (43)
If we perform a similar transformation for the functions In and Kn
In(/lﬂ pq)gfrfng = Z[OJO=—00 In+p (/L qu)jp (’1' pk)ggrf[(n + P)‘qu - ka] (44)
Kn()" pq)gfrfng - Z?:—oo(_l)nKnﬂ) (ﬂ., qu)]p(lr pk)ggrf[(n + p)(pkq - pH_k] (45)
we get the relationships.
To switch from (p, 0) system to (pq, 8q) system, it is enough to replace <<k>> index with <<q>> index in relations (43), (44) and
(45).
When switching from (pk ,0k) or (pq,0q) system to (p,0) system, two cases are considered:
Case | —the center of the outer contour has a central elliptical hole that coincides with the center, but is not similar to it, that is, the
major semi-axes are not equal to the minor semi-axes, or the major semi-axis does not coincide with the major semi-axis of the
outer ellipse.
Case Il — The elliptical hole considered in case | is not present.
Let's look at the transitive relations for each of these cases.
1-In the third case, to move from the ( pk, 0K) system to the (p, 0) system, we write (20) as follows:
Zk = 2+|ka gifg (46)
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Z:(f-l()(]n, ! ;;'r
we substitute in the equation. After that, we subject the W complex plane along the polar axis 7 to-
" ~ -i(6,-6,
Z = p}c ’{ ¢ ) q
coefficient compression . then it becomes and (46) equation
16, ~ —i(8,,— X7,
pre’™t = p. T + e va ya
Aypye b = Ailzo = (_Alﬁr)e_i(empwi‘p_e:) (47)

falls into the form of.
Applying the Graph theorem to (47), we get:

Zm(llp_r)em(g_(pm) = Z?:—oo(_l)pznﬂa (Alp_ko)]p (/11,51”) ep(6R¢+6i<p_6_r) (48)
We multiply this equation by e™P11 and get:

(llﬁk)g?rfng z (_1)10 Zn+p(lllE0)]p (Alﬁr)gfrf[(n + p)‘PE - pgro - pér]

p=—00
In(/llﬁfc)ggrfn97 = Z;:—oo In+p (A1lko)1p(/11ﬁr)§?rf[(n + p)(ﬂﬁo + pero - pér] (49)
Kn(/llpk)g?rfng Z;)Jo:—oo(_l)p Kn+p (Allﬁo)lp (APr ggf [(Tl + p)(pEO +pbro — per] (50)

we also get their relations.

When the center coincides with the semi-major axis of the elliptical hole, 0k 0=0 is taken in equations (48)-(50).

Let's again use the relationship z; = z + [ze to switch to the (p,0) system connected to the external contour. In this case, since the
polar axis coincides with the semi-major axis of the outer ellipse, we subject the transformation z = e~ to compression along the

axis. Then pze'®t = 5,71 4 [,,e'® and as a result
/hpkei(g"_‘p’“):/hpkl — (=41 py) e~ (Pr3=61)

is taken. Then the expressions (48), (49) and (50) for the system related to the outer contour are as follows:
Zn(llﬁk)gfrfng Z?:—oo(_l)p Zn+p(lllﬁo)]p (Alﬁr)gfrf[(n + p)(PE - Pgro - pér]

(51)
In(/llpk)gfrfng Z;o:—oo In+p (’111%0)1,0 (Alﬁr)ggrf[(n + p)‘PTco + P9r0 - pér] (52)
Kn()‘lpk)gfrfng Z?:—oo(_l)p Kn+p (lllﬁo)lp (Alﬁr)gfrf [(n + p)(pEO + Pgro - per] (53)

Wheng, > l;; these relations are as follows:
Zn(/llﬁk)ggfne Z§o=—oo(_1)p Zn+p (Alll_co)]p(llﬁr)glqrf[(n + p)HE - parl - pgkl] (54)

In(/llﬁk)gfrfne Z;o=—oo In+p (Alll_co)lp(llﬁr gfrf [(n + p)(pEO + perl - pgkl] (55)
Kn(llpk)gfrfne Z;))o:—oo(_l)p Knip (Allko)lp (Auﬁr)g?rf[(n + p)Oko + DOk1 — PO;]
(56)

let's assume that the first of the double indices indicates the system to which the expression was imported, and the second indicates
the system from which it was imported.

Note that IQk=Ikq hes.

Let's put the expression we received into a more convenient form. First, let's denote the coefficients B2, and D2, asBZ and D2 for
the case where k=1 in the expression of the eigenfunction in the system (p1,62) and include them in the first infinite sum and k from
2 to m combine the second and third sums by changing.

W =55 {[A22Q 50) + C2u (o B1) + BENG A, B7) + DKo on + Bip[B2e T oo(— 1P Ny (A e o 1)
)0 — PO1] + D T oo~ P [Knap B L)y A 50 [+ D)oy — PO} (57)

sin
Let us change the sums taken in the integral (-o0,00) and take into account the following property of cylindrical functions:

[(n +

sin
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Z;:—oo]—v—p (Zl)]—p (Zz)e ~ipe (58)

D D Nasy A )l @ 5O [0 + P)es — 1]

= > PNy (A by A 52 [+ P)orps — pB]

p=0

+ z (=DPNpip (4, L) ]p (4, Py gfrf[(n +D)Pr1 — P9~1] Z(_l)pNn+p ((/1‘ L) Jp (4, Py gfrf) [(n + D) Pr1
p=—00 p=0

- p‘§1] = +(=1)P Ny (A, L), (A, P1)sin [(n —P)Pr1 + p51]

If we open and regroup the brackets included in the trigonometric functions, we get:

> D ey ) Jp (o (2 + ) = p] =

p:—OO
Here
N pn = Nyyp cos(n + p)@zq + (=P Ny, cos(n — p)@zq

N} - _
Ny pn = —Npip sin(n + p)er, + (1P — P sin P01 Ny_p sin(n — p) gy
2 pn

N3 pp = —Npyp cos(m + p)@gs + (—1)P Ny cos(n — p)@gy (59)
N41 pn = NVn+p sin(n + p)(pfcl + (=P Nn—p sin(n — p)q’fcl
marked. We will buy in a similar way

1

Zg:—oo(_l)pKer(A' lk1) Ip(/l'ﬁ1 gfrf[(n +P)Pr1 — P91] = Zp o(— 1)n<‘3n]p(/1 P1)sin 11pn cos p91 31 smp91)

(60)
and here

K11 pn = Kn+p cos(n + P)<PT<1 + (_1)p Kn—p COS(Tl - P)Q"h
KZ1 pn = _Kn+p Sin(n + P)‘Pl‘a + (_l)p Kn—p sin(n - P)‘Ph
K31 pn = _Kn+p cos(n + p)eg; + (—1)? Kn—p cos(n — p) gy (61)
KA} pn = Kn+p sin(n + p)(PE1 + (1) Kn—p sin(n — p)(pkl
Thus, the expression of the characteristic function for the case g; < [, is:

= S0 {[AR 5 + CEA(A 5 + BEN, (G, pl) + DEK, (A pDISN0 +

ey Z3-0o(— 0" en B 5 (772

(61)
And when g; > [,

= Y= o{[z‘ﬁ]n()L 1) + Ciln(A, p1) + BiNn(4, p1) + DKy (A, p)155m0 +

~ ] n ol n . 21 ~
k=2 Zg=0(_1)n &n [Bz:_rkNp(/L p1) (]11 P cospf; + 11 £ nsmpel) + Dpik]l(l' p1) (

4 pn 4 p
(62)
in expressions (61), (62) k=2,3,....m; and &n is the Neumann factor.

cos po,

1
cos po; + cos p@l) + D51 (A, ) ( + :3; z: sin pél)]}

4

005

cospb, +

e — {0,5 n=0 When}
n 1 n#0  when
In order to obtain the expression of the eigenfunction in the system connected to the central hole whose contour is an ellipse, the

expression (n+p)pk 1 in the expressions (59) and (60) is changed to (n+p) ¢k 1+p6 10, and 6 1 to Or need to be replaced. Then,
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taking into account the appropriate changes, the expression (61) is considered to be p 1> Ik1 on the contour of the central hole, and
p 1>0 on the contour of the ellipse in the center, since 1k1=0.
By means of similar mathematical operations, we can show that (pq, 6q) (as well as the expression of the eigenfunction in the

(pk, k) system (p, < gy, By < lgi) s as follows:

=3, [B,%Nno,ﬁl) + DEK, (A, PGS 1 + o (— 1)) (A,ﬁ )| Az ’: 2 cos pl + ’: 2sinpf, ) +
P p a’ [“p a-+71

cos p9 +

B+( smp9 )+I (A pq) [( cosp9 + cospe + smpG )]
4—

sinpé’~ )C +Dpk(

Yo Ji (A, py) B ( 1P - cos po, + 1 2 sm po, ) + D2 1, (A, q) < P% sin p6q>]} (63)
pn
The expression (63) is used only to satlsfy the rigidities on the internal contours. Therefore, we do not formulate the expression of
the eigenfunction for the cases p, > g and pg > L.
Note that the following signs are used in (63).

"~ cospf, + KZ;

z0k - _

Zé:kk = Zpn(A, lgk)cos(n + p)pgr £ (=1)"Z_,(2, lgk)cos(p — )z (64)

74k . .

Z = Zpsn(4 lgk)sin(n + p)@gr £ (=1)"Z_y (2, lgk)sin(p — n)pqr  (65)

Z

Z = (=1 [Lpan(A, 1K) 0 @ + W@k £ Ln(1,1gK) 0 (0 = M)@g|  (66)

z4

05 = (0 [ 1aR) 0 + Wi £ byn (2 1aR) G (0 = moge| - (67)
L {p q=0,1 When}
P = n q>2 when

K9

Z;Z;: Kyen(A 1K) 0 (0 + D)9 £ Ky (4, 1K) oS = m)pgr (68)

K4 k

Zé’;" = Kpin(L,1qK) ;> (n+D)pgr £ Kyon(A,1gk), cos(p — )@z (69)

AfJn(A,by) + CF L4, by) + BNy (4, by) + D Ky (A, by) + + ity S o(— 1) "e [ By N (4, b)) 1, + DK (A, b)) 1] = 0
(70)

w2 S0 (= 1) en [ ByeNu (4, b1)J3p, + DK (4, 1) 5] = 0 (71)
AfJn(A,by) + CF L (4,by) + B Ny (4, by) + Dy Ky (A, by) + Xy Too(— D)™ [BoeNu (4, b))y + DK (A, b)) 1] = 0
(72)

s Tio(— 1) en[BaiNu (A, 1) 5, + DK (4, b1)J35] = 0 (73)

The central ellipse is considered load-free. Therefore, we get the following equations on that contour g, = b, :

A Jn,by) + CFIn(A,b2) + BN, (4, by) + D Ky (A, by) + Ty oo (—1)"en [ By Na (A, b)) 1y, + DK (A, b1y ] = 0
(74)

ZZp o(— 1)n5n[3 iNa (4, bz)]gpn K w4, bl)]3pn] =0 (75)
AaMy U, (4, by)] + C+M1[I (4, b)] + BJMl[Nn(/L b)] + D My [Kn (4, b2)] + B Bpeo(— D)™ en [ By M1 [ (4, b2) 1N, +
DMy [1, (A, b)) K2 =0 (76)

k=2 2p=o(— 1)n5n[B M Un(4, by)] 32;; +D+ M, (1, (4, by)] 3pn] =0 (77)
Boundary conditions on elastically fixed contours(s, = b,) are expressed by the following equations:

N (4, b2)+D =K, (4, b))+
+E,, o(=D)"en[ApJn A, b)JT, + CF (A b)) + Bt (A, b)Ngyy, + Dol (A, b) K | + Xy Bpto( —

D™ &, [BiJn (A, )N + Do ly (4, b)) ] = 0 (78)

E,, o (=DM en[Ap T (A, b + CF L (A, b)) + B Jn(A, b)NgL + DXl (A, b)KE | + Xy By (—
" en[ B Jn (A, b)NJy, + Doly (4, b)KS | = 0 (79)

A*Ml[zv (A, b)) + D My [Kyy (4, b))+ S0 (=D en [ Ag S (4 b)) o + Cof (A, 1) o + Byt Ju (A, by)Ng +
el (L b)KD |+ 3 30 o(— D)™ e[ B (4, by)N, + Dely (A, b)Ke 1 = 0 (80)
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Yoo (D en[A5 (U b ) + C Ly (A, b, + Byt Ju (A, b)Ngh + Dt (A, )KL |+ 3m, B0 o (—

D™ &, BiJn (A, b)NLL, + Doz ly (4, b)KE ] = 0 (81)

Here
M7 b)) = Bza@,b) + 52200 b,) = 53(1 =092, b) + (5 = £) 24 by) (82)

Thus, z (A,b_r) can be any one of the four cyhndrical functions. On internal contours free of load, we get:
BitgM; [Nu (A, b,)] + Dyl My [Kn (2, )1+ B0 (= 1) €n Ay My [1n(4, ), + Bit Ja(2, by)Npy +

el (U)K ]+ 2y T o(— D™ £a[ B Jn (A, b)NY + DYzl (A, b)Ke | (83)
2,, o (=D& [A 1 (A, bOJSE + C LA, b + Byt T (A, bl)N;‘,,i + Dy (A, )KL ] + 2y X (-
1)" en|BitJu (L bONSE + DLy (A, )KL ] = 0 (84)
HaM3 [N, (2, b)) + Dy Ma[K, (A, by )1+ X o (— 1) e Ay Ma [1, (A, by)] 5y, + Bif M3 (A, by)NG, +
DyeM3(A, b)K{L | + 2y T o( — D)™ &4 B M5 (4, by)Nihy, + DyeM3 (A, b)Ks | (85)
Zp 0( 1)n€n A+M3 []n(l bl)]jlpn + C+M3Un(l bl)]]1pn + B;M3Un(/1: bl)]N??pln + D+ M3Un(A bl)] pn] +Z;cn 1Zp 0( -
D™ &, [ Byt Ms[J, (4, b)INL,, + DiMs 1, (A, by ) 1K ] (86)
Here
M7 b = Az, (A, by) + 52 2(3, by) — zn(a be) 87)
M3[Z7 (A, b)] = Bz, (4, by) +”"1 24, by) — [——" S0 by 20 b+ 2, () (88)

To obtain an infinite system of Ilnear algebraic equations including unknown coeff|C|ents with a minus sign on them, in the system
(70) - (86) you can compare the (+) sign above the unknowns with the (-) sig

Nl -":'l. mth,,] -z L Imth,h,_ 1 'ff'r'l'jwith, oz mth

el 81 | St l. -\..

g - ~k a .
Z,, -l :L k ‘ﬁ'lﬂ], Z, J,,,'J -1z, - with

¥ : - (89) can be replaced by -. Let's call that system (89) as a
whole. Systems (70) - (86) and (89) are independent systems and can be solved separately. If (70) - (86) and (89) if the systems are
regular systems (the regularity of the analogous system is partially shown in (2)), then they can be brought to a "cut" finite system
and solved in EHM.

3. Finding mandatory dances

W (q =1, ﬁ)
Let's point out the special functions ’ " . To solve the problem of forced dance, let's make a system of
b= ¥
o |

orthonormalized functions from eigenfunctions as follows, let ¥ = W, | then be a normalized function . After that, we

write the sequential course of the process, and we hope that the dear reader can understand everything himself:

Vo= Wi = Wigdd b=
Y3 = W35 — (W3¢, — (W5d1) s ¢3 = ﬁ (90)
Vi =W LW - b) b=

Here(W,, ¢]-) is the scalar product of functions. ||, ||denotes the norm of the function , in L2 space.
=Jf |1/)n|2d5 DCL.

i = ||¢3|| 21 1 ayW 1)
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1| wre) ©

q7j ,

a: = — +Za.' #* when,

CA T I N ) I

j=1
a;; = llysll~* q=j when
n _ (_1\1+h 1 q-1 (Wq¢] q=1 (W;qu) _ qr2—1 (Wa*'1¢anj)(wa*_1¢j) ~ _ 1 on .
G = OG22 Tl 2 el da—jrasien l[q—jall G=Le j=1q
(92)

in the form of
Let's write the expression (90) as follows:

1 % -1 *
= W — Yo (Wi dg,) bq,] (93)
In (93), let's write the following expression in place of the ¢q word outside the scalar product:
q2-1
1
bo, =5 Wi = ) Wiy,) by,]
ll)k
q2=1
wg 1 -2 1 W,
Then we buy® 417 wy —yh —L
Y0 = folg = fon B (46 00 )Wa, — 26T (We20) ) oy = o ~ i S (W ®a) g +
q1—2 Wq* CDf/lz) q1 2
e () 26 006.20.)2,

Now, under the last sum sign, in place of the product @q2 outside the scalar product, we write its analogous expressions and continue
the process until g, = 1(i = 1, q). After that, regrouping the expressions, we get:

q1-1
o =—21 _ 2 42)Pq,
O Tl Tl 00 ™ 2 (%)
q1—1
Wi o, Sl 0
* . + ..
qz Iall qz 2R "Z)q; qull L ol e () 4+

From here, the truth of statement (92) is evident. Considering the properties of multilayer sums, let's consider special cases, for
example «q =4, j=3>; Let's look at the cases «q =4, j=2> and «q =4, j=1>>, when j>q -2 the sum Z aa does not exist and
when q =4, =3 we get:

- (wr L W0
%43= [ lIpall (W‘h(qu)] ||zp3|| Iall=lipsl’
— — (=1L 2 Wq,%q, .
By the same rule oc,3= [ Vs ||( 0 %a,) +22“42] pal? %2 = DY XIS [l (W, ®q,)
. (Wy@3) (W d3) (W5 D)
= +
And finallyec,s allll2ll” llpall<liws w2l
When § = 4,j =14 — 2 = 2, j=1. Therefore, if the straight sum §;-; = 1 Xyg= ;[(W*d)l)] D= oc’1
sl 1=
happens.
3 ql:l * * * * * *
ol = (_1)2 Z Z (W4 q)ql)(waq)q1 _(W4 O))(W;D,) n Wy o3)(Wsd,)
“ — L [l |l VA sl
q1=2q2=1
3 _ _133%3 2 1 (Wiog ) (WgPg,)(Wq,Pqs) _ Wgd)(Wgs)(Wg, @ )
1= (1" Xgy=2 2g,=1 2g,=1 sl B W3l
Thus,
1 (W4*d)q1) (W4*<D3)(W3*d)1) (W4*®3)(W3*q)1) _ (W4*¢1)(%*®2)(quq)1)

T Tl el Tball = sl ol el = sl ozl Tl = s 1= 1o T

It has been verified that the coefficients are obtained in a sufficiently large amount. It is clear from expressions (56) and (58) that
all @q functions satisfy all the boundary conditions that the eigenfunctions satisfy. Therefore G(p, 0,t) = Y7 T (t) ¢4

So, hereTy (t) = [, [ G(p,0,t) pqds
D is the solution of (1) when the solution we are looking for is multi-connected
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W= Ba(t)b
=1

If we search in the picture, the border conditions will be automatically paid. Here, Bz(t) is an unknown function.
Thus, if we write (94) and (96) in (1), we get:

(o5 a-1 g-1
W*
; (Bq () + n By (t) — A—4Tq(t)”¢—q” — B (M ; a2, Wy + By ; a W 2T, |V =0 o7

By equating the coefficients of the same eigenfunctions, we get an infinite system of linear differential equations with
inhomogeneous constant coefficients in which the functions 8z (t) are internal:

aw[ﬁ[{(t) + ntz)qﬁq(t) — AT, (t)] - ﬁqu[[’)i”(t) + ngqﬁj(t) - 7\_47}'(’5)] azj =0 (98)
If we denote here y;(t) = g’(t)+n§jﬁi(t) — A7*T;(t) we will arrive at the following system of algebraic equations:
Agq¥q — Lj=g+1 %Y =0 (99)
or if we write openly
a1y — ¥, — ¥z —a@yz — - — =0 (100)

33z — Qz3Y3 —AzgY5 — - — =0

a33Y3 — A35Y7 — A35Y5 — - — =0

a35Y3 — Qgsys — -+ — =0

If we cut and solve the system (70)-(86), we will find functions belonging to a finite number, then the system (100) becomes a finite
system. In this case, the last equation of the system, let's call it the N - th, takes the form ayyyy=0 and we can determine all
v:i(i=1, N) starting from that equation. That is, in this case, we

(0 +ngBi(t) = 17T (0) (101)
we have to solve the independent equations of the form (100) If we find the non-trivial solution (101), it is obtained as follows:
{(®) +ngBi(t) = AT () + i) (102)

The general solutions of equations (101) and (102) are, respectively:
Bi(t) = Cy; cosng;t + Cy; sinngtng fol A4T;(8) sinng (t — §)dé  (103)

Bi(t) = Cy; cosng;t + Cy; sinng;t + ngit fol [7\'\(‘:7(5(){) sin(t — &) dé(104)
To find the arbitrary constants C;; and C,; we also divide the function V(p, 0) into series by means of the function @; :
V(p, 0)=X7-, H; P (105)
so that,
Hg = [, W(p,8)®g ds (106)
Then (10) initial conditions
B7(0) = 0; Bz(0) = Hg (107)
they fall into the picture. We solve them and find: C,; = 0; Ci5 = ng3H;
Thus,

1
Bs(t) = na%Hq sinng;t + ng}t f[Yi(f) + 7\_47}(5)] sinnyg(t — &) d§
0

1
B3 (t) = ngzHg sinng;t + ng}t J- AT () sinngg(t — €) dé
0

After that, the law of departure of each point of the board from the plane position at the desired moment during the forced dance is

known to us
N q-1
we
W= Zﬁq(f) lm - Z agiWy
q=1 a

j=1
Now we can determine the laws of change of the bending and twisting moments Mp, M0 and M, as well as the cutting force in
the oscillation process with the following well-known formulas:
a*w 10W 1 9*W
5 o)

v _pltw 1otw  aw
Mo =T b ap T pz a6z T op

Mp=—D[
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102w
Myg = (1—v)D

Considering (101), these formulas can be written as follows:

M, =D ) f®T
q=1

N

Mg =—-D ) Bz(O)L;

q=1

N
My = (=D Y f(OL;
q=1
0 =-D ) FOL;
q=1

Qs =D B0
q=1

Here the following differential operators are denoted by
L= 1_5)

— 0?
Ll =a—pz+

— 1090
L2 =
Ly

o =

— 93

L =
> 9pae?

10w
p0pdl p? dp

*
1 _
ol

Wq

—.

vl

Wq

*

_a _
ol

10

190

10 1

q-1

]

=1
q-1

Ihg

j=1
q-1
wall 4

q-1

Jj=1

q-1
_a _
ol 2

1 92
335+ o)’
1 9?2
NIRRT
1 97
=306 pp
03 1 92
57 " pop piop T 2 0pae?

1 9?2
* o000t 2o

62

1 0
AW;Qo == -D gz AW

a0

* .
agiWi|;

VV]'*

Agj

* .
agiWy |

Q
o
3

02

1 93

As a result, it turns out that when a;z = by (k = 1,n) the problem of investigating the forced oscillations of a circular plate with
circular holes and its solution is taken as a special case of this problem. This method can be applied to all cases where contours can
be projected onto a circle.
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