Morphological, Chemical, and Thermal Characterization of Tobacco Stalk for Application in Composite Materials
Downloads
The main objective of this study is to analyze the use of tobacco stalk to develop new composite materials. For this purpose, tests and analyses were carried out to characterize the morphological, thermal, and chemical properties, as well as to obtain structural information about this plant waste. Morphology was analyzed by scanning electron microscopy (SEM). Thermogravimetry (TGA) was used to analyze mass loss and temperature degradation. Fourier-transform infrared spectroscopy (FTIR) was applied to determine the chemical composition. SEM showed the presence of filling components such as parenchyma and vascular elements of the xylem. FTIR showed the presence of elements such as absorbed water and primary and secondary aliphatic alcohols identified in cellulose, hemicelluloses, lignin, and carboxylic acids, among other substances. TGA showed cellulose degradation temperature between 250 and 350 °C. The test results indicate that tobacco stalks can be used to develop composite materials as fillers.
M.H. Affzan, H.M. Akil, Z.A.M. Ishak, A.A. Bakar, The effects of natural weathering exposure on the properties of pultruded natural fibre reinforced unsaturated polyester composites, WIT Transactions on Engineering Sciences. 77 (2013) 333–342. https://doi.org/10.2495/MC130291.
M.C. Gutiérrez, P. de T.V. Rosa, M.A. De Paoli, M.I. Felisberti, Biocompósitos de acetato de celulose e fibras curtas de Curauá tratadas com CO2 supercrítico, Polimeros. 22 (2012) 295–302. https://doi.org/10.1590/S0104-14282012005000037.
M.G.L. Ramírez, Desenvolvimento de Biocompósitos de amido termoplástico reforçados por fibra de coco verde., Universidade Federal do Paraná, 2011.
M.J. John, S. Thomas, Biofibres and biocomposites, Carbohydrate Polymers. 71 (2008) 343–364. https://doi.org/10.1016/j.carbpol.2007.05.040.
R. V. Silva, E.M.F. Aquino, Curaua fiber: A new alternative to polymeric composites, Journal of Reinforced Plastics and Composites. 27 (2008) 103–112. https://doi.org/10.1177/0731684407079496.
Sinditabaco, (2019).
http://www.sinditabaco.com.br/ (accessed November 2, 2019).
Afubra, (2019). https://afubra.com.br/ (accessed November 20, 2019).
M.N. Acda, R.J. Cabangon, Termite resistance and physico-mechanical properties of particleboard using waste tobacco stalk and wood particles, International Biodeterioration and Biodegradation. 85 (2013) 354–358.
https://doi.org/10.1016/j.ibiod.2013.08.019.
Z. Qin, M. Sun, X. Luo, H. Zhang, J. Xie, H. Chen, L. Yang, L. Shi, Life-cycle assessment of tobacco stalk utilization, Bioresource Technology. 265 (2018) 119–127.
https://doi.org/10.1016/j.biortech.2018.05.110.
M. Srbinoska, K. Filiposki, I. Risteski, V. Pelivanoska, Tobacco stalks as renewable raw material for agro-industrial, in: Proceedings of International Symposium on Agriculture and Food, Skopje, 2013.
M. Ashby, K. Johnson, Materiais e design: arte e ciência da seleção de materiais no design de produto, 2 ed, Elsevier, Rio de Janeiro, 2011.
R.I.P. Prieb, Situação atual e perspectivas da pequena produção fumageira no Vale do Rio Pardo/RS, Universidade Estadual de Campinas, 2004.
Sousa Cruz, (2019). http://www.souzacruz.com.br.
Y. jing Wang, Y. yun Bi, C. yu Gao, The Assessment and Utilization of Straw Resources in China, Agricultural Sciences in China. 9 (2010) 1807–1815. https://doi.org/10.1016/S1671-2927(09)60279-0.
J. Shakhes, M.A.B. Marandi, F. Zeinaly, A. Saraian, T. Saghafi, Tobacco residuals as promising lignocellulosic materials for pulp and paper industry, BioResources. 6 (2011) 4481–4493. https://doi.org/10.15376/biores.6.4.4481-4493.
T.P. O’Brien, E. McCully, Margaret, The Study of Plant Structure: Principles and Selected Methods, Termarcarphi Pty. Ltd, Melbourne, 1981.
S. Jobim, Caracterização da bainha fibrosa da palmeira Livistona chinensis para aplicação no design de produto, (2018). https://lume.ufrgs.br/handle/10183/179439.
D.L. Pavia, G.M. Lapman, G.S. Kriz, J.R. Vyvyan, Introdução à espectroscopia, 5°, Cengage, 2016.
S. Jobim, Determination of thermal and acoustic properties of the fibrous sheath from the palm tree livistona chinensis as potential insulating material for panel application, (2018).
S.E. Raven, P. H.; Evert, R. F.; Eichhorn, Biologia Vegetal, (2011).
N. Almeida, Estudo estrutural de compósitos de matriz polimérica reforçados com fibras de juta, (2012) 1–184.
http://repositorio-aberto.up.pt/handle/10216/68248.
D.A. Johansen, Plant microtechnique, McGraw-Hill Book Company, New York and London, 1940.