Mechanical Behaviour of Ferrocement Lightweight Banana Fibre Concrete under Uniaxial Bending
Downloads
To obtain lightweight and environmentally friendly building materials that can be produced quickly at low cost, among others, can be obtained through the use of natural fiber based ferrocement concrete technology. The use of light weight building materials combined with natural fibers to form structural components is intended to reduce the weight of the building mass but also to protect the environment and benefit banana farmers' income. Ferrocement lightweight concrete (FLWC) can be obtained by partially substituting fine aggregate with pumice sand and by adding banana stem fiber to form a ferrocement lightweight fiber concrete (FLWFC) composition. Compressive and tensile tests on ferrocement lightweight concrete and ferrocement light fiber concrete were carried out at 7, 14, 21 and 28 days, respectively. The test results showed that the optimal composition of FLWC and FLWFC occurred in the substitution of pumice sand by 40% and banana stem fibers with a length of 3 cm by 0.05% of the weight of cement and obtained a concrete mass density of 1437 kg. The compressive strength and tensile strength of FLWC without fiber at 28 days were 8.4 MPa and 2.15 MPa respectively, while FLWC with fiber added increased by about 6%, namely 8.9 MPa for compressive strength and 83% for tensile strength is 3.94 MPa. Flexural tensile strength of Sandwich Wall Panels (SWP) at 28 days of prism-shaped specimens with dimensions of 60 x 30 x 5 cm, 45 x 15 x 4 cm and 30 x 10 x 3 cm respectively 1.60 MPa, 1.86 MPa and 2.4 MPa for FLWC without banana stem fiber. The increase in the flexural tensile strength of the SWP was 40.63% (2.25 MPa), 21.51% (2.26 MPa) and 18.75% (2.85 MPa) respectively in the SWP-FLWC using Banana Fibers (BF) or an average of 26% increase. The size effect of the SWP test object looks significant, that is, there is a tendency that the larger the dimensions of the test object, the smaller the flexural tensile strength value, but on the contrary, the role of banana stem fiber in contributing to the increase in flexural tensile strength is seen to be more significant.
2. Joshua D. Blunt and Claudia P. Ostertag, Deflection Hardening and Workability of Hybrid Fiber Composites, ACI Materials Journal, V.106, No.3, 2009, page 265-272.
3. Arivalagan S, Earthquake- Resistant Performance of Polypropylene Fiber Reinforced Concrete Beams, Journal of Engineering and Technology, Vol. 2 (01), 2012, pp. 63-67.
4. Aly T Sanjayan G and Collins F, Effect of polypropylene fibers on shrinkage and cracking of concretes, Journal of Materials and Structures, Vol. 41, 2008, pp. 1471-1753.
5. Banthia N and Gupta R, Hybrid fiber reinforced concrete (HYFRC): fiber synergy in high strength matrices, Journal of Materials and Structures,Vol. 37, 2004, pp.707-716.
6. Yun Da Shao, Wen Feng Wang, Experimental Study on Fracture Properties of Hybrid Fiber Reinforced Concrete, Advanced Materials Research (Volumes 450 - 451), 2012, pp518-522.
7. Ramadevi K., Venkatesh Babu D. L., Flexural Behaviour of Hybrid (Steel-Polypropylene) Fibre Reinforced Concrete Beams, European Journal of Scientific Research, ISSN 1450-216X Vol.70 No.1, 2012, pp. 81-87.
8. Kumaat E..J, Mondoringin, M.R.I.A.J, Manalip. H, Basic Behaviour of Natural Banana Stem Fiber Reinforced Concrete Under Uniaxial and Biaxial Tensile Stresses , International Journal of GEOMATE, Vol.14, Issue 44, 2018, pp.166-175.
9. Manalip and Windah, Perilaku Dasar Beton Serat Nenas, 2008.
10. Ellen. J. Kumaat., Mielke R. I. A. J. Mondoringin, H. Manalip, Perilaku Mekanis Beton Ringan Ferosemen Berbasis Serat Alami Batang Pisang Sepatu Sebagai Bahan Konstruksi Sandwich Wall Panel Tipis Yang Ramah Lingkungan Menggunakan Ferro Split-Bamboo Mesh. 2020.
11. Nawy E.G, Beton Bertulang Suatu Pendekatan Dasar, PT Eresco, Bandung, 1990.
12. Sagel R, Kol P, Kusuma G, Pedoman Pengerjaan Beton Berdasarkan SK-SNI-T-15- 03, Penerbit Erlangga, Jakarta, 1993.
13. Daimler-Chrysler and Deutsche Lufthansa Airlines, EURONATUR, Leyte State University, Hohenheim University, Utilization of Abaca Fiber as Industrial Raw Material Workshop: Sustainable Development, Natural Fiber from Modern Technology, Subsistence and Biodiversity Improvement Projects in the Philippines, 2002.
14. Kumaat et. al., Pemanfaatan Serat Batang Pisang sebagai Bahan Dasar Pembentuk Beton Serat, STRATNAS, 2009.
15. Kumaat et. al., Poster Ilmiah: Banana Stem Fiber in Concrete, Innovation Japan 2009 – University Fair, 2009.
16. Kim, J., Yi, C.K danZi, G, Biaxial Flexural Strength of Concrete by Two Different Methods, Magazine of Concrete Research, 2012, pp 1057-1065 in Zi, Gdan Kim J 2013.
17. Agopyan, V. Vegetable Fiber Reinforced Building Materials-Developments in Brasil and other Latin American Countries. Concrete Technology and Design, Volume 5, Natural Viber Reinforcement Cement and Concrete Blackie and Son Ltd, London, 1988, hal 08-242.
18. Soroushian, P.& Ravanbakhsh, S., High- early Strength Concrete: mixture proportioning with processed cellulose fiber for durability, ACI Materials Journals, V.96.N0.5.September- October, 1999, 593-600.
19. Chanh., V.N., Steel Fiber Reinforced Concrete, Ho Chi Minh University of Technology, 2003.
a. https://ekbis.sindonews.com
20. Supraptiningsih. Pengaruh Serbuk Serat Batang Pisang sebagai Filler terhadap Sifat Mekanis Komposit PVC – CaCO3, 2012.
21. Lokantara, P. 2012. Analisis Kekuatan Impact Komposit Polyester- Serat Tapis Kelapa Dengan Variasi Panjang Dan Fraksi Volume Serat Yang Diberi Perlakuan NaOH. Bali: Fakultas Teknik Universitas Udayana. Dinamika Teknik Mesin, 2:47-54.In : Sintesa Material Hibrida Berbasis Geopolimer Abu Layang Batubara, Skripsi, UNES Semarang.
22. Syafrudin, Pengaruh Konsentrasi Larutan dan Waktu Pemasakan terhadap Rendemen dan Sifat Fisis Pulp Batang Pisang Kepok (Musa sp.) Pasca panen. Skripsi. Yogyakarta: Fakultas Kehutanan Universitas Gadjah Mada.in: Syaiful,A. Pemanfaatan Serat Batang Pohon Pisang. In :Sintesa Material Hibrida Berbasis Geopolimer Abu Layang Batubara, Skripsi, UNES Semarang, 2004.
23. ASTM C-78 , Four Point-Bent Test
24. ASTM C 496/C 496-04, Splitting Tensile Strength of Cylindrical Concrete Specimens.