Analyzing Textual Data in Behavioral Science with Natural Language Processing
: Natural Language Processing (NLP) has emerged as a breakthrough technique in behavioral science, enabling researchers to examine large-scale textual data to acquire insights into human cognition, emotions, and social interactions. Traditional behavioral research methods frequently rely on manual analysis, which is time-consuming and prone to biases. NLP improves the precision and scalability of behavioral research by automating this process through sentiment analysis, topic modeling, and deep learning techniques. Its applications extend to mental health monitoring, education, social media analysis, and healthcare, with studies demonstrating its effectiveness in detecting depression, analyzing public discourse, and improving clinical decision-making. However, challenges remain such as data bias, ethical concerns, privacy issues, and the interpretability of NLP models. Future research should focus on developing interpretable AI models, integrating multimodal data sources, and improving privacy-preserving techniques to ensure responsible and ethical application of NLP in behavioral science. Addressing these challenges will allow NLP to bridge the gap between qualitative and quantitative research, and revolutionize the way human behavior is studied and understood.
Abdullah, R. M., Ameen, S. Y., Ahmed, D. M., Kak, S. F., Yasin, H. M., Ibrahim, I. M., Ahmed, A. M., Rashid, Z. N., Omar, N., & Salih, A. A. (2021). Paralinguistic Speech Processing: An Overview. Asian Journal of Research in Computer Science, 34–46. https://doi.org/10.9734/ajrcos/2021/v10i130233
Arowosegbe, A., & Oyelade, T. (2023). Application of Natural Language Processing (NLP) in Detecting and Preventing Suicide Ideation: A Systematic Review. In International Journal of Environmental Research and Public Health (Vol. 20, Issue 2). MDPI. https://doi.org/10.3390/ijerph20021514
Bauer, E., Greisel, M., Kuznetsov, I., Berndt, M., Kollar, I., Dresel, M., Fischer, M. R., & Fischer, F. (2023). Using natural language processing to support peer-feedback in the age of artificial intelligence: A cross-disciplinary framework and a research agenda. British Journal of Educational Technology, 54(5), 1222–1245.
https://doi.org/10.1111/bjet.13336
Boyd, R. L., & Schwartz, H. A. (2021). Natural Language Analysis and the Psychology of Verbal Behavior: The Past, Present, and Future States of the Field. Journal of Language and Social Psychology, 40(1), 21–41.
https://doi.org/10.1177/0261927X20967028
Chung, S., Moon, S., Kim, J., Kim, J., Lim, S., & Chi, S. (2023). Comparing natural language processing (NLP) applications in construction and computer science using preferred reporting items for systematic reviews (PRISMA). In Automation in Construction (Vol. 154). Elsevier B.V. https://doi.org/10.1016/j.autcon.2023.105020
Ding, Y., Ma, J., & Luo, X. (2022). Applications of natural language processing in construction. In Automation in Construction (Vol. 136). Elsevier B.V. https://doi.org/10.1016/j.autcon.2022.104169
Eido, W. M., & Ibrahim, I. M. (2025). Ant Colony Optimization (ACO) for Traveling Salesman Problem: A Review. Asian Journal of Research in Computer Science, 18(2), 20–45. https://doi.org/10.9734/ajrcos/2025/v18i2559
Eido, W. merza, & Yasin, H. M. (2025). Pneumonia and COVID-19 Classification and Detection Based on Convolutional Neural Network: A Review. Asian Journal of Research in Computer Science, 18(1), 174–183. https://doi.org/10.9734/ajrcos/2025/v18i1556
Epoka, B. E. (2023). Literature Review of Qualitative Data with Natural Language Processing. Journal of Robotics Spectrum, 56–65.
https://doi.org/10.53759/9852/jrs202301006
Gading Abdullah, R., Mahameru, M. A., & Rachman, A. (2024). RANCANG BANGUN SISTEM INFORMASI MANAJEMEN PENGUMPULAN DOKUMEN SKRIPSI MAHASISWA DENGAN MENGGUNAKAN MODEL WATERFALL. Prosiding Seminar Implementasi Teknologi Informasi Dan Komunikasi, 3(2).
https://doi.org/10.31284/p.semtik.2024-2.6169
Guo, J. (2022). Deep learning approach to text analysis for human emotion detection from big data. Journal of Intelligent Systems, 31(1), 113–126. https://doi.org/10.1515/jisys-2022-0001
Hariri, W. (2023). Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and Future Directions in Natural Language Processing. http://arxiv.org/abs/2304.02017
Harrison, C. J., & Sidey-Gibbons, C. J. (2021). Machine learning in medicine: a practical introduction to natural language processing. BMC Medical Research Methodology, 21(1). https://doi.org/10.1186/s12874-021-01347-1
Hou, Y., & Huang, J. (2025). Natural language processing for social science research: A comprehensive review. Chinese Journal of Sociology. https://doi.org/10.1177/2057150X241306780
Ibrahim, I., & Abdulazeez, A. (2021). The Role of Machine Learning Algorithms for Diagnosing Diseases. Journal of Applied Science and Technology Trends, 2(01), 10–19.
https://doi.org/10.38094/jastt20179
Ismael, H. R., Ameen, S. Y., Kak, S. F., Yasin, H. M., Ibrahim, I. M., Ahmed, A. M., Rashid, Z. N., Omar, N., Salih, A. A., & Ahmed, D. M. (2021). Reliable Communications for Vehicular Networks. Asian Journal of Research in Computer Science, 33–49. https://doi.org/10.9734/ajrcos/2021/v10i230238
Jackson, J. C., Watts, J., List, J. M., Puryear, C., Drabble, R., & Lindquist, K. A. (2022). From Text to Thought: How Analyzing Language Can Advance Psychological Science. Perspectives on Psychological Science, 17(3), 805–826. https://doi.org/10.1177/17456916211004899
Jahan, M. S., & Oussalah, M. (2023). A systematic review of hate speech automatic detection using natural language processing. In Neurocomputing (Vol. 546). Elsevier B.V. https://doi.org/10.1016/j.neucom.2023.126232
Jim, J. R., Talukder, M. A. R., Malakar, P., Kabir, M. M., Nur, K., & Mridha, M. F. (2024). Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Natural Language Processing Journal, 6, 100059. https://doi.org/10.1016/j.nlp.2024.100059
Khan, W., Daud, A., Khan, K., Muhammad, S., & Haq, R. (2023). Exploring the frontiers of deep learning and natural language processing: A comprehensive overview of key challenges and emerging trends. Natural Language Processing Journal, 4, 100026. https://doi.org/10.1016/j.nlp.2023.100026
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82(3), 3713–3744. https://doi.org/10.1007/s11042-022-13428-4
Lavanya, P. M., & Sasikala, E. (2021). Deep learning techniques on text classification using Natural language processing (NLP) in social healthcare network: A comprehensive survey. 2021 3rd International Conference on Signal Processing and Communication, ICPSC 2021, 603–609. https://doi.org/10.1109/ICSPC51351.2021.9451752
Le Glaz, A., Haralambous, Y., Kim-Dufor, D. H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine learning and natural language processing in mental health: Systematic review. In Journal of Medical Internet Research (Vol. 23, Issue 5). JMIR Publications Inc. https://doi.org/10.2196/15708
Li, I., Pan, J., Goldwasser, J., Verma, N., Wong, W. P., Nuzumlali, M. Y., Rosand, B., Li, Y., Zhang, M., Chang, D., Taylor, R. A., Krumholz, H. M., & Radev, D. (2022). Neural Natural Language Processing for unstructured data in electronic health records: A review. In Computer Science Review (Vol. 46). Elsevier Ireland Ltd. https://doi.org/10.1016/j.cosrev.2022.100511
Malgaroli, M., Hull, T. D., Zech, J. M., & Althoff, T. (2023). Natural language processing for mental health interventions: a systematic review and research framework. In Translational Psychiatry (Vol. 13, Issue 1). Springer Nature. https://doi.org/10.1038/s41398-023-02592-2
Maulud, D. H., Ameen, S. Y., Omar, N., Kak, S. F., Rashid, Z. N., Yasin, H. M., Ibrahim, I. M., Salih, A. A., Salim, N. O. M., & Ahmed, D. M. (2021). Review on Natural Language Processing Based on Different Techniques. Asian Journal of Research in Computer Science, 1–17.
https://doi.org/10.9734/ajrcos/2021/v10i130231
Mishra, S., Choubey, S., Choubey, A., Yogeesh, N., Rao, J. D. P., & William, P. (2022). Data Extraction Approach using Natural Language Processing for Sentiment Analysis. International Conference on Automation, Computing and Renewable Systems, ICACRS 2022 - Proceedings, 970–972.
https://doi.org/10.1109/ICACRS55517.2022.10029216
Murphy, R. M., Klopotowska, J. E., de Keizer, N. F., Jager, K. J., Leopold, J. H., Dongelmans, D. A., Abu-Hanna, A., & Schut, M. C. (2023). Adverse drug event detection using natural language processing: A scoping review of supervised learning methods. PLoS ONE, 18(1 January). https://doi.org/10.1371/journal.pone.0279842
Naithani, K., & Raiwani, Y. P. (2023). Realization of natural language processing and machine learning approaches for text-based sentiment analysis. Expert Systems, 40(5). https://doi.org/10.1111/exsy.13114
Nijhawan, T., Attigeri, G., & Ananthakrishna, T. (2022). Stress detection using natural language processing and machine learning over social interactions. Journal of Big Data, 9(1). https://doi.org/10.1186/s40537-022-00575-6
Orellana, S., & Bisgin, H. (2023). Using Natural Language Processing to Analyze Political Party Manifestos from New Zealand †. Information (Switzerland), 14(3).
https://doi.org/10.3390/info14030152
Patra, B. G., Sharma, M. M., Vekaria, V., Adekkanattu, P., Patterson, O. V., Glicksberg, B., Lepow, L. A., Ryu, E., Biernacka, J. M., Furmanchuk, A., George, T. J., Hogan, W., Wu, Y., Yang, X., Bian, J., Weissman, M., Wickramaratne, P., Mann, J. J., Olfson, M., … Pathak, J. (2021). Extracting social determinants of health from electronic health records using natural language processing: A systematic review. In Journal of the American Medical Informatics Association (Vol. 28, Issue 12, pp. 2716–2727). Oxford University Press. https://doi.org/10.1093/jamia/ocab170
Rathje, S., Mirea, D. M., Sucholutsky, I., Marjieh, R., Robertson, C. E., & Van Bavel, J. J. (2024). GPT is an effective tool for multilingual psychological text analysis. Proceedings of the National Academy of Sciences of the United States of America, 121(34). https://doi.org/10.1073/pnas.2308950121
Salah, M., Al Halbusi, H., & Abdelfattah, F. (2023). May the force of text data analysis be with you: Unleashing the power of generative AI for social psychology research. Computers in Human Behavior: Artificial Humans, 1(2), 100006. https://doi.org/10.1016/j.chbah.2023.100006
Saleh, R. A., & Yasin, H. M. (2025). Advancing Cybersecurity through Machine Learning: Bridging Gaps, Overcoming Challenges, and Enhancing Protection. Asian Journal of Research in Computer Science, 18(2), 206–217. https://doi.org/10.9734/ajrcos/2025/v18i2572
Saleh, R. A., & Zebari, I. M. I. (2025). Enhancing Network Performance: A Comprehensive Analysis of Hybrid Routing Algorithms. Asian Journal of Research in Computer Science, 18(3), 1–16. https://doi.org/10.9734/ajrcos/2025/v18i3573
Saleh, R. A., & Zeebaree, S. R. M. (2025). Artificial Intelligence in E-commerce and Digital Marketing: A Systematic Review of Opportunities, Challenges, and Ethical Implications. Asian Journal of Research in Computer Science, 18(3), 395–410. https://doi.org/10.9734/ajrcos/2025/v18i3601
Sangeetha, R., Srivastava, D., Vats, S., Logeshwaran, J., & Vishwakarma, P. (2023). Language Processing with Recursive Neural Networks. 2023 IEEE International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, RMKMATE 2023.https://doi.org/10.1109/RMKMATE59243.2023.10369726
Shaik, T., Tao, X., Li, Y., Dann, C., McDonald, J., Redmond, P., & Galligan, L. (2022). A Review of the Trends and Challenges in Adopting Natural Language Processing Methods for Education Feedback Analysis. IEEE Access, 10, 56720–56739. https://doi.org/10.1109/ACCESS.2022.3177752
Sousa, S., & Kern, R. (2023). How to keep text private? A systematic review of deep learning methods for privacy-preserving natural language processing. Artificial Intelligence Review, 56(2), 1427–1492. https://doi.org/10.1007/s10462-022-10204-6
Tato, F. R., & Yasin, H. M. (2025). Detecting Diabetic Retinopathy Using Machine Learning Algorithms: A Review. Asian Journal of Research in Computer Science, 18(2), 118–131. https://doi.org/10.9734/ajrcos/2025/v18i2566
Tejaswini, V., Babu, K. S., & Sahoo, B. (2024). Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model. ACM Transactions on Asian and Low-Resource Language Information Processing, 23(1).
https://doi.org/10.1145/3569580
Torregrosa, J., Bello-Orgaz, G., Martínez-Cámara, E., Ser, J. Del, & Camacho, D. (2023). A survey on extremism analysis using natural language processing: definitions, literature review, trends and challenges. Journal of Ambient Intelligence and Humanized Computing, 14(8), 9869–9905. https://doi.org/10.1007/s12652-021-03658-z
Tyagi, N., & Bhushan, B. (2023). Demystifying the Role of Natural Language Processing (NLP) in Smart City Applications: Background, Motivation, Recent Advances, and Future Research Directions. In Wireless Personal Communications (Vol. 130, Issue 2, pp. 857–908). Springer. https://doi.org/10.1007/s11277-023-10312-8
Ullah, W., Oliveira-Silva, P., Nawaz, M., Zulqarnain, R. M., Siddique, I., & Sallah, M. (2025). Identification of depressing tweets using natural language processing and machine learning: Application of grey relational grades. Journal of Radiation Research and Applied Sciences, 18(1), 101299. https://doi.org/10.1016/j.jrras.2025.101299
Younis, H. A., Ruhaiyem, N. I. R., Ghaban, W., Gazem, N. A., & Nasser, M. (2023). A Systematic Literature Review on the Applications of Robots and Natural Language Processing in Education. In Electronics (Switzerland) (Vol. 12, Issue 13). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/electronics12132864
Zhang, N., Xue, J., Ma, Y., Zhang, R., Liang, T., & Tan, Y. an. (2021). Hybrid sequence-based Android malware detection using natural language processing. International Journal of Intelligent Systems, 36(10), 5770–5784. https://doi.org/10.1002/int.22529
Zhang, T., Schoene, A. M., Ji, S., & Ananiadou, S. (2022). Natural language processing applied to mental illness detection: a narrative review. In npj Digital Medicine (Vol. 5, Issue 1).Nature Research.https://doi.org/10.1038/s41746-022-00589-7
Zheng, H., Xu, K., Zhou, H., Wang, Y., & Su, G. (n.d.). Academic Journal of Science and Technology Medication Recommendation System Based on Natural Language Processing for Patient Emotion Analysis.
Zhou, B., Yang, G., Shi, Z., & Ma, S. (2024). Natural Language Processing for Smart Healthcare. IEEE Reviews in Biomedical Engineering, 17, 4–18. https://doi.org/10.1109/RBME.2022.3210270