Enhancing Educational QA Systems: Integrating Knowledge Graphs and Large Language Models for Context-Aware Learning
Downloads
This study explores the integration of Knowledge Graphs (KG) and Large Language Models (LLMs) to design a question-answering (QA) system in the field of education. The proposed method involves constructing a KG using LLMs, retrieving contextual prompts from high-quality learning resources, and enhancing these prompts to generate accurate answers to real questions related to major educational concepts.
The technical framework outlined in this paper, along with the analysis of results, contributes to the advancement of LLM applications in educational technology. The findings provide a foundation for developing intelligent, context-aware educational systems that leverage structured knowledge to support learning and enhance educational outcomes.
Ansari, A. N., Ahmad, S., & Bhutta, S. M. (2024). Mapping the global evidence around the use of ChatGPT in higher education: A systematic scoping review. Education and Information Technologies, 29(9),1128111321.
https://doi.org/10.1007/s10639-023-12223-4
Bayne, S., Evans, P., Ewins, R., Knox, J., Lamb, J., Macleod, H., O’Shea, C., Ross, J., Sheail, P., Sinclair, C., & Johnston, K. (2020). The manifesto for teaching online. MIT Press.
https://doi.org/10.7551/mitpress/11840.001.0001
Bayne, S., & Ross, J. (2016). Manifesto redux: Making a teaching philosophy from networked learning research. In S. Cranmer, N. B. Dohn, M. de Laat, T. Ryberg, & J. A. Sime (Eds.), Proceedings of the 10th International Conference on Networked Learning 2016 (pp. 210–128). Lancaster: University of Lancaster. https://doi.org/10.54337/nlc.v10.8821
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021, March). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (pp. 610–623). https://doi.org/10.1145/3442188.3445922
Birt, L., Scott, S., Cavers, D., Campbell, C., & Walter, F. M. (2016). Member checking: A tool to enhance trustworthiness or merely a nod to validation? Qualitative Health Research, 26(13), 1802-1811. https://doi.org/10.1177/1049732316654870
Bozkurt, A., Xiao, J., Lambert, S., Pazurek, A., Crompton, H., Koseoglu, S., Farrow, R., Bond, M., Nerantzi, C., Honeychurch, S., Bali, M., Dron, J., Mir, K., Stewart, B., Costello, E., Mason, J., Stracke, C. M., Romero-Hall, E., Koutropoulos, A., Toquero, C. M., Singh, L., Tlili, A., Lee, K., Nichols, M., Ossiannilsson, E., Brown, M., Irvine, V., Raffaghelli, J. E., Santos-Hermosa, G. Farrell, O., Adam, T., Thong, Y. L., Sani-Bozkurt, S., Sharma, R. C., Hrastinski, S., & Jandrić, P. (2023a). Speculative futures on ChatGPT and generative artificial intelligence (AI): A collective reflection from the educational landscape. Asian Journal of Distance Education, 18(1), 53–130
https://doi.org/10.5281/zenodo.7636568
Burns, T., Sinfield, S., & Abegglen, S. (2023). Postdigital academic writing. In Encyclopedia of Postdigital Science and Education (pp. 1–7). Springer Nature Switzerland
https://doi.org/10.1007/978-3-031-35469-4_27-1
Clayton, M. J. (1997). Delphi: a technique to harness expert opinion for critical decision-making tasks in education. Educational Psychology, 17(4), 373–386
https://doi.org/10.1080/0144341970170401
Cormier, D. (2023, Jan 20). ChatGPT search – Autotune for knowledge. Dave’s Educational Blog. https://davecormier.com/edblog/2023/01/20/chatgpt-search-autotune-for-knowledge/comment-page-1/
Costello, E. (2024). ChatGPT and the educational AI chatter: Full of bullshit or trying to tell us something? Postdigital Science and Education, 6(2), 425–430. https://doi.org/10.1007/s42438-023-00398-5
Floridi, L. (2023). AI as agency without intelligence: On ChatGPT, large language models, and other generative models. Philosophy & Technology, 36(1),1–7. https://doi.org/10.1007/s13347-023-00621-y
Furze, L. (2024, July 19). AI metaphors we live by: The language of artificial intelligence. https://leonfurze.com/2024/07/19/ai-metaphors-we-live-by-the-language-of-artificial-intelligence/
Gale, K., & Bowstead, H. (2013). Deleuze and collaborative writing as method of inquiry. Journal of Learning Development in Higher Education, 6. https://doi.org/10.47408/jldhe.v0i6.222
Gupta, A., Atef, Y., Mills, A., & Bali, M. (2024). Assistant, parrot, or colonizing loudspeaker? ChatGPT metaphors for developing critical AI literacies. Open Praxis, 16(1), 37–53. https://doi.org/10.55982/openpraxis.16.1.631
Harari, Y. N. (2024). Nexus: A brief history of information networks from the stone age to AI. Random House Publishing
Group. https://www.ynharari.com/book/nexus/
Hicks, M. T., Humphries, J., & Slater, J. (2024). ChatGPT is bullshit. Ethics and Information Technology, 26(2), 38. https://doi.org/10.1007/s10676-024-09775-5
Jandrić, P., Hayes, D., Truelove, I., Levinson, P., Mayo, P., Ryberg, T., Monzó, L. D., Allen, Q., Stewart, P. A., Carr, P. R., Jackson, L., Bridges, S., Escaño, C., Grauslund, D., Mañero, J., Lukoko, H. O., Bryant, P., Fuentes-Martinez, A., Gibbons, A., … Hayes, S. (2020). Teaching in the Age of Covid-19. Postdigital Science and Education, 2(3), 1069–1230. https://doi.org/10.1007/s42438-020-00169-6
Jandrić, P., Luke, T. W., Sturm, S., McLaren, P., Jackson, L., MacKenzie, A., Tesar, M., Stewart, G. T., Roberts, P., Abegglen, S., Burns, T., Sinfield, S., Hayes, S., Jaldemark, J., Peters, M. A., Sinclair, C., & Gibbons, A. (2023). Collective writing: The continuous struggle for meaning-making. Postdigital Science and Education, 5(3), 851–893. https://doi.org/10.1007/s42438-022-00320-5
Koutropoulos, A., Stewart, B., Singh, L., Sinfield, S., Burns, T., Abegglen, S., Hamon, K., Honeychurch, S., & Bozkurt, A. (2024). Lines of flight: The digital fragmenting of educational networks. Journal of Interactive Media in Education, 2024(1), 1–13
https://doi.org/10.5334/jime.850
Latour, B. (2010). An attempt at a “compositionist manifesto”. New Literary History, 41(3), 471–490. https://doi.org/10.1353/nlh.2010.a408295
Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790.
https://doi.org/10.1016/j.ijme.2023.100790
Liu, D., & Helmer, E. (2024, Feb 9). The sorcerer’s apprentice: Applied AI for data. Perspectives, Substack. https://debliu.substack.com/p/the-sorcerers-apprentice-applied
Maas, M. M. (2023). AI is like… A literature review of AI metaphors and why they matter for policy. SSRN Electronic Journal
https://doi.org/10.2139/ssrn.4612468
Mack, E. (2014, Oct 26). Elon Musk: ‘We are summoning the demon’ with artificial intelligence. CNET. https://www.cnet.com/science/elon-musk-we-are-summoning-the-demon-with-artificial-intelligence/
Merriam, S. B. (2001). Qualitative research and case study applications in education. Jossey-Bass.
Mollick, E., & Mollick, E. (2024). Co-Intelligence. Random House UK.
Pelletier, K., Brown, M., Brooks, D. C., McCormack, M., Reeves, J., Arbino, N., Bozkurt, A., Crawford, S., Czerniewicz, L., Gibson, R., Linder, K., Mason, J., & Mondelli, V. (2021). 2021 EDUCAUSE horizon report teaching and learning edition.EDUCAUSE. https://www.learntechlib.org/p/219489/
Peters, M. A., Besley, T., Tesar, M., Jackson, L., Jandrić, P., Arndt, S., & Sturm, S. (2021). The methodology and philosophy of collective writing: An educational philosophy and theory reader volume X. Routledge.
https://doi.org/10.4324/9781003171959
Risteff, M. (2023, Apr 24). AI is an extraordinary copilot when used responsibly. K-12 Dive. https://www.k12dive.com/spons/ai-is-an-extraordinary-copilot-when-used-responsibly/647644/
Saban, A., Kocbeker, B. N., & Saban, A. (2007). Prospective teachers’ conceptions of teaching and learning revealed through metaphor analysis. Learning and Instruction, 17(2), 123–139. https://doi.org/10.1016/j.learninstruc.2007.01.003
Sharples, M., & Pérez y Pérez, R. (2022). Story machines: How computers have become creative writers. Routledge. https://doi.org/10.4324/9781003161431 Slagter van Tryon, P. J., & Bishop, M. J. (2006). Identifying “e-mmediacy strategies for web-based instruction: A Delphi study.” The Quarterly Review of Distance Education, 7(1) 49–62.
Stracke, C. M., Burgos, D., Santos-Hermosa, G., Bozkurt, A., Sharma, R. C., Swiatek Cassafieres, C., dos Santos, A. I., Mason, J., Ossiannilsson, E., Shon, J. G., Wan, M., Obiageli Agbu, J.-F., Farrow, R., Karakaya, Ö., Nerantzi, C., Ramírez-Montoya, M. S., Conole, G., Cox, G., & Truong, V. (2022a). Responding to the initial challenge of the COVID-19 pandemic: Analysis of international responses and impact in school and higher education. Sustainability, 14(3), 1876. https://doi.org/10.3390/su14031876
Stracke, C. M., Chounta, I.-A., & Holmes, W. (2024). Global trends in scientific debates on trustworthy and ethical artificial intelligence and education. Artificial Intelligence in Education. Communications in Computer and Information Science, 2150, 254–262
https://doi.org/10.1007/978-3-031-64315-6_21
Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1), 1–24
https://doi.org/10.1186/s40561-023-00237-x
Yan, Y., Sun, W., & Zhao, X. (2024). Metaphorical conceptualizations of generative artificial intelligence use by Chinese university EFL learners. Frontiers in Education, 9
https://doi.org/10.3389/feduc.2024.1430494
Ziglio, E. (1996). The Delphi method and its contribution to decision-making. In M. Adler & E. Ziglio (Eds.), Gazing into the oracle: The Delphi method and its application to social policy and public health (pp. 3–33). Jessica Kingsley Publishers