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ABSTRACT: Underactuated systems are one of the emerging research topics due to their challenging problems and applications 

in real-world engineering systems. In this paper, we consider the control problem of balancing the reaction wheel pendulum. 

Many control methods have been adopted to control the system and one of the common controls is based on sliding mode control 

(SMC). In SMC, the chattering phenomenon and its solution are widely discussed. Several approaches have been proposed, for 

example replacing the switching function, second-order SMC, and higher-order SMC. Here, the balancing of the reaction wheel 

pendulum with disturbances is considered. First, the system model derivation based on the Euler-Lagrange method is discussed. 

Second, a different approach to designing a controller is given where feedback linearization and robust super-twisting sliding 

mode control are used. The control performances are compared with those of standard and modified switching functions of first-

order sliding mode control. For second-order sliding mode control, the super-twisting and PID super-twisting controllers are 

employed. In each controller, similar disturbances, namely, impulse signal and sinusoidal signal are used to verify the 

effectiveness of the controller. We conduct the comparison studies in Matlab/Simulink with fixed controller's gains and the 

controllers effectively stabilize the pendulum upright and reject the given external disturbances.  

KEYWORDS: Reaction Wheel Pendulum; Sliding Mode Control; Balancing Control; Robust Super-Twisting Control 

 

I.  INTRODUCTION 

A reaction wheel pendulum (RWP) is a two-degree of freedom 

(DOF) system where a rotating disk is actuated at one end of a 

pendulum while the other end of the pendulum is pivoted to the 

base. The system was first coined by Spong et al. [1], where he 

pointed out the simplicity of its dynamics among other similar 

pendulums yet nonlinear and underactuated. So far, the system 

has been used as a benchmark to study advanced 

methodologies in the nonlinear control system as well as to 

study the simplified model of decoupled systems. There are 

two common control problems in RWP, namely: (1) swing up 

and stabilize the pendulum in an inverted position, and (2) 

stabilize the pendulum upright from an initial position around 

an unstable equilibrium point. In this paper, we consider the 

control problem of stabilizing the pendulum in the upper 

position from an initial position near the equilibrium point. 

This control problem has practical applications in robotics, e.g. 

in 2 DOF robots with two links [2], reaction wheel unicycle 

robots [3],[4], and new spherical drive wheel robots [5]. 

In literature, many control methods have been proposed to 

solve this control problem using sliding mode control 

[6],[7],[8]. In [6], the second-order sliding mode control is used 

to track reference trajectory. In contrast, in [7], a combination 

of sliding mode control and generalized PI control is employed 

to solve the problem. A novel sliding mode control based on 

the quasi-chained form of coordinate transformation is 

presented in [8] in which the state variables vanish 

asymptotically towards the equilibrium point. Here, we present 

the comparison of balancing control of RWP using first-order 

and second-order sliding mode controls. In second-order 

sliding mode control (SOSMC), the control algorithms are 

based on the Super-Twisting algorithm (STA) and Adaptive 

Super-Twisting algorithm (ASTA). This work is different from 

those in [6],[7],[8] as well as in previous works in [3],[4]. The 

difference with existing control methods in 

[3],[4],[6],[7],[8],[9]  can be described briefly in the following. 

Firstly, the sliding surface is defined based on the feedback 

linearization as given in [1],[10]. Secondly, two control 

algorithms i.e. STA and ASTA, as opposed to classical sliding 

mode control are compared in terms of control performance 

and chattering effect in control input. 

Generally, there are two approaches to solve this 

stabilization control problem by using state-feedback 

linearization [1],[3],[4],[7],[10],[11], [12] and output feedback 

linearization [13],[14]. In this paper, we present comparative 

studies on different control algorithms in first-order and 

second-order sliding mode controls based on state-feedback 

linearization. It is well known that the disadvantage of classical 

first-order sliding mode control is introducing control 

chattering, while second-order sliding mode control can 

attenuate this effect. However, in recent studies of chattering 

parameters for first-order sliding mode control and the Super-

https://doi.org/10.47191/etj/v8i8.10


“Robust Super-Twisting Sliding Mode Control for Balancing Reaction Wheel Pendulum” 

2566                                                                                           Yusie Rizal,ETJ Volume 08 Issue 08 August 2023 

 

Twisting algorithm as discussed by Perez-Ventura and Fridman 

[15]: for a system with slow actuators, the amplitude of 

oscillations and average power produced by the Super-Twisting 

algorithm be larger than those one caused by first-order sliding 

mode control. Unlike the existing research discussed in 

[6],[7],[8],and [15], we compare the control performances and 

chattering effects of the said control algorithms for different 

scenarios by considering the changing sliding manifold 

parameters with the fixed controller gains. 

We conduct several simulations for three control algorithms 

to stabilize the system using classical first-order sliding mode 

control, Super-Twisting algorithm, and Adaptive Super-

Twisting algorithm. We observe the effect of choosing constant 

parameters in the sliding surface on the convergences of the 

system trajectory. Moreover, we provide simplification in the 

design stage by ignoring one term of system dynamics and 

considering this term as a perturbation. The control 

performances are evaluated and compared by treating similar 

initial positions and sliding surface parameters for all 

controllers. By choosing the same initial condition and sliding 

surface parameters, we expect the comparison between these 

control methods to become fair and unbiased. This work aims 

to provide a comparative study of different algorithms in 

second-order sliding mode control (using STA and ASTA) and 

first-order sliding mode control concerning the stabilization 

control of the reaction wheel pendulum. 

 

II.  REACTION WHEEL PENDULUM SYSTEM 

A. System Model 

Fig. 1 shows the system model of a reaction wheel pendulum. It 

consists of a reaction wheel or a disk and a pendulum where 

one side of the pendulum is attached to the base and the other 

side is connected to the reaction wheel. The system model can 

be derived as follows [11]. 

 
Fig. 1. System model of reaction wheel pendulum. 

 

Let the pendulum position of the center of mass xp and position 

of reaction wheel xw are 

 
p c

w p

x l

x l








 (1) 

The kinetic energy of the pendulum and reaction wheel are  

 2 21 1

2 2
tran p p p wT m x m x   (2) 

  
2

21 1

2 2
rot p wT I I      (3) 

and the total kinetic energy T is 
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2

1
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1
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 (4) 

while the energy potential is 

    cos 1p c w pV m l m l g     (5) 

The Lagrangian function is given by 

 L T V   (6) 

Thus, the Euler-Lagrange is  

 
L L

Q
t q q

   
  

   
 (7) 

Where  

  Tq    (8) 

  0T

wQ   (9) 

By rearranging the equations, we have: 
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w w w
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I I
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 (10) 

Where 

 
c p p wm l m l m   (11) 

With the system parameters are given in Table I. 

 

Table I. Parameter of the System 

Symbo

l 
Description Value 

S.I. 

Unit 

mp Pendulum’s mass 0.141 kg 

mw 

Reaction wheel’s 

mass 
0.554 kg 

Ip 

Pendulum’s 

moment inertia 

0.691

0-3 
kg.m2 

Iw 

Reaction wheel’s 

moment inertia 

4.361

0-3 
kg.m2 

lc 

Center of mass of 

pendulum 
0.11 m 

lp 

Length of 

pendulum 
0.21 m 

g 
Gravity 

acceleration 
9.81 

kg.m/

s2 

w 

Torque (control) 

input 
- N.m 

We use the state-variables of the system: 

 
1 2 3 4, , ,x x x x        (13) 
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and thus, we have 

 ( ) ( )x f x g x u   (14) 

where the states x  D  n, input u  U  m and f(x) and 

g(x) are locally Lipschitz.  

 

2

22 1 12

4

21 1 11

0

sin / /
( ) , ( )

0

sin / /

x

a m g x d a d
f x g x

x

a m g x d a d
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   
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 (15) 

with a11, a12, a21, a22, and d are: 

 

 

2 2

11

12 21 22

2 2
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w
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a a a I

d I I m l m l
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 (16) 

From the analysis of the system in (10), we obtain the phase 

potrait of the pendulum as  given in Fig. 2 where each set of 

initial conditions is represented by a different point or curve.  

 

 

Fig. 2. Phase portrait of the pendulum 

 

B. Controllability and Involutivity Conditions 

To check the controllability and involutivity of the system, 

first, we simplify the system by ignoring the third state variable 

x3 in Eq. (14) due to the cyclic-variable [10]. From Eq. (15), we 

have 

 

2

22 1 12

21 1 11

0

( ) sin / , ( ) /

sin / /

x

f x a m g x d g x a d
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 (17) 

For short, we use f and g for f(x) and g(x), respectively. We 

calculate the rank of the system in Eq. (14), 

 
0 1 2 3f f fRank ad g ad g ad g     (18) 

i.e. full rank, where the elements in Eq. (18) are given in the 

following as the results of Lie Brackets 
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in which [f , g] is a Lie Brackets. From Eq. (18) we obtained 

the system is controllable.  

Next, we check the involutivity of the system in Eq. (15) using  

 
fg ad g  

 (22) 

    1 2 1 2 1 2,Rank f f Rank f f f f     (23) 

since,  

    1 2, ( ) ( ) 0 0 0f ff f ad g g g ad g       (24) 

and hence, 
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i.e., the rank is 3. 

We want to find the output function that can lead us to the 

input-output linearization with relative degree n. We assume 

that y is the output that we are looking for. By using the 

following procedure, we then try to find the solution for y. 
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The solution of (27)–(29) is  

 11 2 12 4y a x a x  . (30) 

 

III.  FEEDBACK LINEARIZATION 

The control method used in this paper is based on feedback 

linearization. We compare different sliding mode control 
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including standard feedback linearization. Let’s suppose from 

Eq. (30), 

 ( )h x y  (31) 

By taking Lie derivative for h with respect to f and g until we 

find LgLf
i-1h  0, where for i=3 we have   

 2 22 1cos
0g f

mga x
L L h

d
    (32) 

This means for i = 1,2, we have 

 
0 1 0g f g fL L h L L h   (33) 

By denoting   
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then, the first derivative of (34) are given as follow 
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where 
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and by using u as  
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Hence, it follows from Eq. (35)   

 

1 2
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3
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


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in which Eq. (38) is the feedback linearized form. 

 

IV.  CONTROLLER DESIGN 

The controller design is presented in this section. Let’s suppose 

the PID sliding surface [16] is 

  1 1 2 2 3 3 1 3is w w w k dt          (39) 

By taking first derivative of Eq. (39), we have 

  1 1 2 2 3 3 1 3is w w w k          (40) 

It follows that 

  1 1 2 3 2 3i is k w k w w         (41) 

The PID Super-Twisting sliding mode control is given by 

  1 1 1

3

1
eq st

w
      (42) 

where 

  1 1 1 2 2 3eq i ik w k w        (43) 

 
1 1 2( ) ( )st s sign s sign s     (44) 

In comparison, we use a standard Super-Twisting algorithm 

[9], i.e. given by 

  
3

1
eq st

c
     (45) 

Where 

 
1 2 2 3eq c c      (46) 

 
1

2

1 2( ) ( )st k s sign s k sign s      (47) 

Moreover, for standard SMC, we use the control law as given 

in (45), where 

 ( )st sign s   . (48) 

For the modified switching function for SMC, the control law 

is [17] 

 tanh( )st s    (49) 

Where the equivalent control for Eq. (48) and (49) are similar 

as given  

 
1 2 2 3eq k k      (50) 

 

V.  SIMULATION RESULTS 

This section presents the simulation results that are obtained 

from Matlab/Simulink. In the simulation, we compare 

different control methods, namely, feedback linearization, 

standard sliding mode control, modified switching function of 

sliding mode control [17], Super-Twisting algorithm [18], and 

PID Super-Twisting controller. The control gains for each 

controller are given as follows. For feedback linearization, the 

control gains are k1 = 0.25, k2 = 6, and k3 = 3.5. For the 

standard sliding mode control, we use control gains k1 = 1.5, 

k2 = 20, and = 30, while the modified switching function 

SMC are k1 = 1.5, k2 = 50.5, and γ = 30. Furthermore, for the 

Super-Twisting algorithm, we choose c1, c2, c3, k1, and k2 are 

0.05, 15, 25, 20, and 25, respectively. Finally, for the PID 

Super-Twisting control gains w1, w2, w3, ki, σ1, and σ2 are 

given by 0.5, 60, 90, 0.01, 15, and 20, respectively. 

The simulation results are presented in Figs. (3)–(7). In 

Fig. 3, the comparison of different controllers is given for the 

system without any disturbances. Based on the given 

controller gains, the modified SMC and standard SMC are the 

controllers that have fast convergences compared to the other 

controllers. Standard Super-Twisting and PID Super-Twisting 

have similar responses, while feedback linearization is 

moderate. 
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Fig. 3. Simulation of reaction wheel pendulum without 

disturbances 

 

Fig. 4. Simulation of reaction wheel pendulum with 

sinusoidal disturbances. 

In Fig. 4, the sinusoidal signal is given as a continuous 

disturbance. The amplitude for the disturbance is similar for 

all controllers, i.e., 0.0045 N/m with a frequency of 10 rad/sec. 

From the simulation result, as shown in Figs. 4 and 5, 

modified SMC, Standard, and PID Super-Twisting controllers 

have shown their robustness to reject sinusoidal disturbance.  

 
Fig. 5. Comparison of system responses for different 

control methods with sinusoidal disturbances. 

 

 

Fig. 6. Simulation results of reaction pendulum system with 

impulse disturbances. 

 

To evaluate its robustness, another type of disturbance, i.e. 

impulse signal is introduced in the system. The amplitude of 

this disturbance signal is 0.005 N/m. The results are shown in 

Fig. 6 and 7. From these figures, the modified SMC and 

Standard Super-Twisting controller have shown their 

robustness to reject impulse disturbance. Among the others, 

feedback linearization control has the worst performance 

compared to the other four controllers when the system has 

disturbances. 

Finally, the control performances are given in Tabel II-IV. 

Four criteria are used to measure its performance, i.e. Integral 

Absolute Error (IAE), Integral Time Absolut Error (ITAE), 

Integral Square Error (ISE), and Integral Time Square Error 

(ITSE). 

 
Fig. 7. Comparison of system response for different control 

methods with impulse disturbances. 

Fig. 8.  

Table II. Control Performances for System without 

disturbance 

Control 

Method 

Name of Criterion 

IAE ITAE ISE ITSE 

Feedback 

Linearization 
0.0828 0.5080 

0.004

4 

0.001

4 

Standard 0.0405 0.7686 0.000 0.000
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Control 

Method 

Name of Criterion 

IAE ITAE ISE ITSE 

SMC 7 7 

Modified 

SMC 
0.1607 0.0748 

0.000

9 

0.000

0 

Standard STA 0.1725 0.3291 
0.008

8 

0.007

3 

PID-STA  0.1703 0.6156 
0.008

2 

0.006

4 

 

Table III. Control Performances for System with 

Sinusoidal Disturbance 

Control 

Method 

Name of Criterion 

IAE ITAE ISE ITSE 

Feedback 

Linearization 
0.1054 1.1470 

0.004

2 

0.002

5 

Standard SMC 0.0437 0.8649 
0.000

7 

0.000

9 

Modified 

SMC 
0.0165 0.0844 

0.000

9 

0.000

0 

Standard STA 0.1737 0.3738 
0.008

7 

0.007

3 

PID-STA  0.1691 0.6097 
0.008

1 

0.006

3 

 

From the simulation results as given in Tables II, II, and IV, 

we found that the values of IAE and ITAE are smaller when 

the controlled system has fast convergence. However, ISE and 

ITSE values will be smaller if the controlled system has a 

smaller steady-state error and fast convergence at the same 

time. It is shown in those tables with given controller gains, 

that the modified SMC has a better performance compared to 

the other controllers. 

 

Table IV. Control Performances for System with Impulse 

Disturbance 

Control 

Method 

Name of Criterion 

IAE ITAE ISE ITSE 

Feedback 

Linearization 
0.1029 0.7195 

0.004

7 

0.007

3 

Standard SMC 0.0413 0.7763 
0.000

7 

0.000

7 

Modified 

SMC 
0.0160 0.0741 

0.000

9 

0.000

0 

Standard STA 0.1752 0.4184 
0.008

8 

0.007

3 

PID-STA  0.1696 0.6038 
0.008

2 

0.006

4 

 

VI.  CONCLUSION 

This paper studies the comparison of various nonlinear robust 

controllers using five different control algorithms, namely, the 

feedback linearization control, standard sliding mode control, 

modified switching function of first-order sliding mode 

control, a Super-Twisting controller, and PID Super-Twisting 

controller. All controllers have shown their effectiveness in 

stabilizing the reaction wheel pendulum system to balance 

upright. For the given controller gains, we found that the 

modified SMC has a better performance compared to the other 

four controllers. 
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