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ABSTRACT: Melanoma is considered to be the most aggressive form of skin cancer. At present, the evaluation of malignancy is 

performed primarily by invasive histological examination of the suspicious lesion. Developing an accurate classifier for early and 

efficient detection can minimize and monitor the harmful effects of skin cancer and increase patient survival rates. Due to the similar 

shape of malignant and benign cancerous lesions, doctors spend considerably more time when diagnosing these findings. However, 

using a deep learning approach as a computer vision tool can overcome some of the challenges. This paper proposes a multi-class 

classification task using the CoAtNet architecture, a hybrid model that combines the deep depthwise convolution matrix operation 

of traditional convolutional neural networks with the strengths of Transformer models and self-attention mechanics to achieve better 

generalization and capacity. The model was evaluated based on precision, recall, and AP. The proposed multi-class classifier 

achieves an overall precision of 0.901, recall 0.895, and AP 0.923, indicating high performance compared to other state-of-the-art 

networks. The proposed approach should provide a less complex framework to automate the melanoma diagnostic process and speed 

up the life-saving process. 

KEYWORDS: skin cancer; melanoma; computer-aided diagnostics; image classification; CoAtNet; convolutional neural networks; 

deep learning. 

 

1 INTRODUCTION 

Artificial intelligence (AI) is emerging to assist healthcare 

professionals with routine tasks such as removing noise, 

analysing images or reading medical reports. (Hamet & 

Tremblay 2017) In deep learning, currently the most widely 

adopted AI technique, computer algorithms learn using 

backpropagation to predict outcomes based on large data sets. 

(Albawi et al. 2017) The efficiency of these methods has 

improved dramatically in recent years and can now be found 

in areas ranging from computer-aided diagnostics (CADx) to 

online shopping to autonomous vehicles. However, deep 

learning tools also raise troubling questions because they 

solve problems in ways that humans cannot always observe. 

(Wang et al. 2020, Holzinger et al. 2019) There is a growing 

call among researchers and institutions to clarify the basis on 

which artificial intelligence makes decisions. (Kvak et al. 

2022, Amann et al. 2020, Samek & Müller 2019) 

The US Food and Drug Administration (FDA) recently 

outlined ten guiding principles that should be the cornerstone 

for the development of clinically applicable artificial 

intelligence. (FDA 2021) These guiding principles can help 

support the introduction of objective, safe and effective 

medical devices to the market. Beyond monitoring or 

defining the correct use, the core principles include many 

practices that have proven successful in other sectors; 

however, the greatest emphasis is on the so-called 

explainability of predictions (XAI, explainable artificial 

intelligence), which limits the risk of clinical bias. (Ghassemi 

et al. 2021) 

 

2 BACKGROUND 

One of the most common methods used to identify melanoma 

is the ABCD rule which was introduced in 1985. (Nachbar et 

al. 1994) The acronym stands for Asymmetry, Borderline 

Irregularity, Changes in Color and Diameter. In 2004, the 

letter E was added to the ABCD acronym to stand for 

Evolving. (Jensen & Elewski 2015) Each criterion has certain 

features that are recognized to distinguish between benign 

and malignant melanoma. In addition, the method failed to 

recognize certain malignant nevi in their early stages. (Carli 

et al. 2002, Liu et al. 2005) 

Melanoma is less common than other types, but it is the 

most dangerous form of skin cancer because it can spread 

quickly to other parts of the body. (Coit et al. 2009) It results 

from neoplastic proliferation of melanocytes. Malignant 

melanoma predominantly affects the skin, but can also affect 

eyes, ears, leptomeninges, and the mucous membranes of the 

mouth or genital tract. (Bastian 2014) The incidence of 

melanoma is increasing, affecting mainly the light skin 

population. (Matthews et al. 2017, Rigel et al. 1996) The 

pathophysiology of melanoma development is not yet clearly 

understood. (Hida et al. 2020) Multiple pathogenetic 

mechanisms of melanoma development are hypothesized. 

Melanoma develops not only on sun-exposed skin, where UV 
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radiation is the main pathogenetic factor, but also in body 

parts that are relatively protected 

 
Figure 1: The delay-adjusted incidence and observed incidence of melanoma by age and gender in the United States 

between 1975 and 2011. 

 

from radiation. (Apalla et al. 2017, Coit et al. 2009) When 

melanoma is suspected, it is important to biopsy the 

suspicious lesionon the skin or mucosa (excision with a 1-3 

mm margin of tissue) and subsequent histological 

examination. (Bastian 2014) 

3 COMPUTATIONAL APPROACH 

CADx approaches based on deep learning and computer 

vision may represent an effective and, above all, affordable 

alternative to invasive histological examination. (Kassani & 

Kassani 2019) Applications based on convolutional neural 

networks (CNN) show promising results in medical image 

detection, classification and segmentation. (Li et al. 2014, 

Anwar et al. 2018) High accuracy is now achieved in 

interstitial lung disease classification (Shen et al. 2015) or in 

the detecion of colorectal adenomas and neoplastic lesions. 

(Yu et al. 2016) Many attempts have been made in the 

literature to improve the performance of CNN, either by using 

optimization methods to select significant features or by 

using image preprocessing techniques before the 

classification step. (Thoma 2017) 

3.1 Proposed model arcitecture 

CoAtNet offers a unique combination of depthwise 

convolutions (1) and self-attention (2) to allow fast and 

accurate advancement for large-scale image recognition and 

classification. The proposed architecture is based on the 

observation that CNNs tend to exhibit improved 

generalization (i.e., the difference in performance between 

training and testing) due to their inductive bias, whereas self-

attention models tend to show greater capacity (i.e., the 

ability to fit large-scale training data). (Dai et al. 2021) 

 
Figure 2: Overview of the used CoAtNet model. 

 

(1) is a type of convolution operation where we use one 

convolution filter for each input channel. (Tan & Le 2019) 

Unlike spatially separable convolutions, depthwise 

convolutions work with kernels that cannot be split. (Guo et 

al. 2019) In a conventional 2D convolution performed over 

multiple input channels, the filter is as deep as the input and 

allows us to arbitrarily mix channels to generate individual 

features in the output. (Chang & Sha 2016) In contrast, 

depthwise convolutions maintain each channel separately. 

We can express this with the formula below: 

 
has become widespread technique adopted in natural 

language processing (NLP), with the fully-attentional 

Transformer model having largely replaced recurrenr neural 
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networks (RNN) and being used in state-of-the-art language 

understanding models such as GPT, BERT, and XLNet. This 

technique allows the receptive field to be entire spatial 

locations, and computes weights based on renormalized 

pairwise similarity between pairs: if each pixel in the feature 

map is treated as a random variable and paring covariances 

are calculated, the value of each predicted pixel can be 

enhanced or weakened based on its similarity to other pixels 

in the image. The participating target pixels are the weighted 

sum of the values of all pixels, where the weights represent 

the correlation between each pixel and the target pixel. This 

can be represented by the following formula: 

                        (2) 

4 DATASET 

The development of robust CADx systems for the automated 

diagnosis of skin lesions is hindered by the small size of 

clinically evaluated dermatoscopic image datasets available. 

(Garg et al. 2021) We assembled dermatoscopic images from 

different publicly available repositories while maintaining a 

representation of different populations, acquired and stored 

by different modalities. 

The final dataset consists of 6,826 dermatoscopic images, 

representative of all important diagnostic categories in the 

field of various lesions: actinic keratoses, basal cell 

carcinoma, benign keratosis-like lesions, dermatofibroma, 

melanoma, nevus, and vascular lesions (angiomas, 

angiokeratomas, pyogenic granulomas, and hemorrhages). 

For a fraction of the images (∼50%), the ground truth was 

determined by histopathological examination, while in the 

remaining images the finding was decided by expert 

consensus or confirmed by in vivo confocal microscopy. A 

total of 300 images were extracted from the dataset as a test 

set (100 melanoma, 100 non-melanoma skin cancer, 100 

benign skin lesions). The remaining 6,526 dermatology 

images were split between the training and validation set in 

an 80/20 ratio. 

 
Figure 3: Examples of melanoma at different stages represented in the training set. 

 

4.1 Data augmentation 

Data augmentation increases the size of the input training data 

along with the regularization of the model, thus improving the 

generalization of the training model. (Mikołajczyk & 

Grochowski 2018) It also helps to create new train examples 

by randomly applying different transformations to the 

available dataset to reflect the noise in the real data. (Shorten 

& Khoshgoftaar 2019, Elgendi et al. 2021) In this study, we 

applied transformations involving random rotations (<= 

0.25), modifications in contrast (0.9-1.1) and brightness (0.9-

1.1), zoom (<= 0.25), and saturation (0.9-1.1). The extension 

of validation set was not investigated. 

 

Table 1: CoAtNet classifier performance on the used dataset. 

Class No. of images Precision Recall AP 

Average model performance 6,826 0.901 0.895 0.923 

Actinic keratoses 332 0.786 0.821 0.772 

Basal cell carcinoma 514 0.880 0.922 0.919 

Benign keratosis-like lesion 1,099 0.894 0.877 0.903 

Dermatofibroma 115 0.875 0.913 0.944 

Melanoma 1,563 0.870 0.875 0.908 

Nevus 3,061 0.935 0.913 0.958 

Vascular lesions 142 1.000 0.931 0.995 

5 CLASSIFIER PERFORMANCE 

An F1 Score becomes a critical evaluation tool to determine 

False Positive and False Negative rates yielded through a 

discriminating threshold in a similar situation with 

unbalanced dataset samples. (Sokolova et al. 2006) The 

classification performance of the Carebot SkinIO model for 

multi-class problem was evaluated for each component and 

the average classification performance of the model was 

calculated. Table 1 includes the precision (3) and recall (4) 

calculated based on the following equations below: 

(3) 
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(4) 

For specific experiments and given that there is a class 

imbalance problem, the most reliable metric is the model 

average accuracy metric, while given that this accuracy is 

high, the second most important metric is the recall metric for 

individual classes. (Japkowicz & Stephen 2002) This is due 

to the importance of correctly identifying true cases that are 

malignant. AP (Average Precision) (5) summarizes a 

precision-recall curve as the weighted mean of precisions 

achieved at each threshold (Yilmaz & Aslam 2006), with the 

increase in recall from the previous threshold used as the 

weight: 

 
Visualizing model predictions 

Despite the classifier showing impressive results on standard 

metrics, from a clinical perspective, it is important for us to 

determine whether features relevant to skin lesion detection 

and analysis were extracted during CoAtNet training using 

backpropagation. As mentioned in the chapter 1 Introduction, 

medical devices should not serve as "black boxes" but need 

to provide additional information about how the model 

arrived at its predictions. (England & Cheng 2019, Amann et 

al. 2020, Samek & Müller 2019) Gradient-weighted Class 

Activation Mapping (Grad-CAM) is a method that uses 

gradient extraction from the last convolutional layer of a 

neural network to indicate the pixels that contribute most to 

the model output and the predicted probability of an image 

belonging to a predefined class. (Selvaraju et al. 2017) The 

resulting attention map can be plotted over the original image 

and can be interpreted as a visual tool to identify the regions 

that the model predicts whether an image belongs to a 

particular class. (Selvaraju et al. 2017, He et al. 2019) 

 
Figure 4: Grad-CAM activation heatmap visualization from CoAtNet model on real-world test data. 

 

5.1 Model performance on test data 

The precision-recall curve shows the trade-off between 

precision and recall for different thresholds. (Buckland & 

Gey 1994) A high area under the curve represents both high 

recall and high precision, with high precision associated with 

low False Positive cases and high recall associated with low 

False Negative cases. (Boyd et al. 2013) The combination of 

the confusion matrix and Grad-CAM visualization for the test 

set suggests that the model learned appropriate features for 

classification across malignant and benign lesions from a 

limited dataset. 

 
Figure 5: (a) Precision-Recall curve for Melanoma class. (b) Confusion matrix showing the results on the compiled 3-class 

test set. 
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6 CONCLUSIONS 

In this study, we classified nine skin lesions with a particular 

focus on melanoma, which, although not as prevalent, is 

responsible for three-quarters of skin cancer related deaths. 

The classification of melanoma was performed using no 

lesion segmentation or complex image preprocessing. The 

proposed method is based on the state-of-the-art CoAtNet 

architecture, which incorporates the advantages of depthwise 

convolution and self-attention mechanism. Considering the 

necessity of large-scale data for efficient training, we applied 

data augmentation techniques to the existing dataset. 

Evidence from the exploratory analysis shows that the 

proposed approach significantly outperforms state-of-the-art 

models by achieving model average precision of 0.901, recall 

0.895 and AP 0.923. 
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