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ABSTRACT: This study propose the use of heterogeneous visual landmarks, points and line segments, to achieve effective 

cooperation in indoor SLAM environments. In order to achieve un-delayed initialization required by the bearing-only observations, 

the well-known inverse-depth parameterization is adopted to estimate 3D points. Similarly, to estimate 3D line segments, we present 

a novel parameterization based on anchored Plücker coordinates, to which extensible endpoints are added. 
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I. INTRODUCTION  

Most sensors used for SLAM operation such as laser range 

finder, IR and Star Gazer are expensive or needed some 

artificial markers for the sensing. CCD camera can reduce 

cost of production of robot because it is relatively cheap and 

able to directly use natural markers which cover environment 

enables its broader application range. Point features have 

been most used as landmarks for vision sensors due to the fact 

that it facilitates its general use and application. 

In comparison to the point features, straight line features can 

be easily detected, tracked and less affected by dynamic 

obstacles such as pedestrians. Furthermore, it enables the 

system to perform SLAM even with significantly fewer 

features than the case of using point features.  

The simultaneous localization and mapping (SLAM) problem 

asks if it is possible for a mobile robot to be placed at an 

unknown location in an unknown environment and for the 

robot to incrementally build a consistent map of this 

environment while simultaneously determining its location 

within this map. A solution to the SLAM problem has been 

seen as a “holy grail” for the mobile robotics community as it 

would provide the means to make a robot truly autonomous 

[1]. This paper introduced a vision-based SLAM system that 

used both of point and line feature for mobile robots in indoor 

environment. 

 

II. DEVELOPMENT OF INDOOR VISUAL SLAM 

SYSTEM 

The solution of the SLAM problem has been one of the 

notable successes of the robotics community over the past 

decade. SLAM has been formulated and solved as a 

theoretical problem in a number of different forms. SLAM 

has also been implemented in a number of different domains 

from indoor robots to outdoor, underwater, and airborne 

systems. At atheoretical and conceptual level, SLAM can 

now be considered a solved problem. However, substantial 

issues remain in practically realizing more general SLAM 

solutions and notably in building and using perceptually rich 

maps as part of a SLAM algorithm. 

SLAM is a process by which a mobile robot can build a map 

of an environment and at the same time use this map to 

deduce its location. In SLAM, both the trajectory of the 

platform and the location of all landmarks are estimated on 

line without the need for any a priori knowledge of location. 

Solutions to the probabilistic SLAM problem involve finding 

an appropriate representation for both the observation model 

and motion model that allows efficient and consistent 

computation of the prior and posterior distributions in 

equations Time-update and Measurement Update. By far, the 

most common representation is in the form of a state-space 

model with additive Gaussian noise, leading to the use of the 

extended Kalman filter (EKF) to solve the SLAM problem. 

One important alternative representation is to describe the 

vehicle motion model in equation The motion model as a set 

of samples of a more general non-Gaussian probability 

distribution. This leads to the use of the Rao-Blackwellized 

particle filter, or Fast SLAM algorithm, to solve the SLAM 

problem. While EKF-SLAM and Fast SLAM are the two 

most important solution methods, newer alternatives, which 

offer much potential, have been proposed, including the use 

of the information-state form. 

Various researchers in the SLAM community have written 

software demonstrating SLAM, implemented in MATLAB, 

C++, and Java and available online. Collections of logged 

data are also listed. These datasets are from real sensors in 

real environments and are a valuable resource to assess and 

benchmark the various SLAM algorithms. 
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Table 1. Open source SLAM software 

 
 

Table 2. Online datasets 

 
 

A Monocular camera is a projective sensor that measures the 

bearing of image features. Given an image sequence of a rigid 

3-D scene taken from a moving camera, it is now well known 

that it is possible to compute both a scene structure and a 

camera motion up to a scale factor. To infer the 3-D position 

of each point feature, the moving camera must observe it 

repeatedly each time, capturing a ray of light from the point 

feature to its optic centre. The measured angle between the 

captured rays from different viewpoints is the point feature’s 

parallax—this is what allows its depth to be estimated [2]. 

Most of SLAM works have made use of point features 

because points are easy to extract, match, and represent. 

However, there is wide consensus on the fact that punctual 

world representations cannot provide satisfactory mapping 

results. Indeed, a map consisting of a sparse set of 3D points 

is far from describing the structure of the surrounding world. 

This is inherent to the dimensionless character of points, 

which contain no notion of neighbourhood by themselves. 

Instead, segment-based landmarks include the one-

dimensional notion of connectivity, and the two- dimensional 

notion of boundary, providing the map with a much richer 

representativeness of reality. Connectivity and boundary 

information can be exploited to establish useful metrical and 

topological descriptions of the environment. This is 

effectively an important step forward for structured scenarios 

with plenty of straight lines [3]. 

The extended Kalman filter formulation of simultaneous 

localization and mapping (EKF-SLAM) algorithm produces 

very optimistic estimates once the “true” uncertainty in 

vehicle heading exceeds a limit. To overcome this, we 

decided to use the sensor-centred Extended Kalman Filter. 

Contrary to the standard EKF, where estimates are always 

referred to a world reference frame, the sensor-centred 

approach represents all feature locations and the camera 

motion in a reference frame local to the current camera. The 

typical correlated feature-sensor uncertainty arising from the 

uncertain camera location is transferred into uncertainty in the 

world reference frame, resulting in lower variances for the 

camera and map features, and thus in smaller linearization 

error. Another characteristic of our algorithm is the use of 1-

point RANSAC for EKF estimation; which in the case of the 

EKF with tightly correlated priors is enough to discard 

spurious matches. A reduction in the number of random 

hypotheses that are needed as in our approach, comes as a 

result of incorporating into the motion model some 

restrictions on the allowed motion; specifically planar motion 

and a large radius of curvature typical of robot motion is 

assumed. The extra information available from a motion 

model to aid matching is dealt with in a much more general 

manner, and we are able to cope with smooth camera motion 

with the full robot motion [4]. 

 

III.  SYSTEM DEVELOPMENT 

This section the development of the Indoor Visual SLAM 

System. First, we will introduce how our system is configured. 

As a main computational unit, a laptop is placed on the track 

robot, and an USB camera is connected to the laptop. The 

track robot provides the odometer information through a 

serial port. From the calibrated monocular camera, the point 

feature and the line feature of the environment are extracted, 

and these visual features together with the odometer 

information are used as the sensory input to the EKF-SLAM 

system. The EKF-SLAM is implemented as camera-centered 

variant to prevent the inconsistency inherently included in the 

standard EKF algorithms.  

Odometer

Monocular
Camera

Line Feature

Point Feature

EKF-SLAM

Serial Comm.

 
Fig. 1 System configuration 

IV.  EXPERIMENTS 

We performed three sets of experiments in different 

environments; the first experiment was performed with a 

corridor dataset taken from indoor, the second experiment 

was performed with a laboratory dataset, and the third 

experiment was performed with an office dataset. The latter 

two dataset were all gathered at Robotics Corporation. Before 

proceed the experiments, the camera was calibrated firstly 

with the conventional check board method. 

A. Camera Calibration 

We used the open “Camera Calibration Toolbox for Matlab” 

for the calibration of the monocular camera. We used twenty 

images for the calibration and some of them are shown in the 

next figure. 
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Fig. 2 Image used for the calibration of the camera 

After reading in the pattern images, the four corners of each 

image should be manually provided using careful mouse 

clicks. Then the toolbox will ask you to type in some 

parameters about the check board pattern. After corner 

extraction, you can click on the Calibration button to run the 

main camera calibration procedure. 

The results of the calibration process conducted on the 

previously shown images are given in the next table. The 

table includes the camera intrinsic parameters and the radial 

distortion parameters.  

 

Table 3. Calibration Results 

Intrinsic parameters 

xf  208.20556 

yf
 208.44251 

0x  159.3736 

0y  119.71155 

Radial distortion parameters 

1  -0.31880 

2  0.07455 

3  0.00025 

4  0.00022 

 

After the camera calibration, the extracted intrinsic 

parameters were used in visual data processing for accurate 

environment mapping. In the following experiments, all 

images were collected at a resolution of 320×240 pixels. 

 

B. Feature Extraction 

The point features are extracted using the FAST Corner 

detector; the line features are extracted by checking pixel 

continuity test with Canny edge images. 

The FAST Corner detector [5] is used to find the point feature 

in the input image. The segment test criterion operates by 

considering a circle of sixteen pixels around the corner 

candidate p. The detector classifies p as a corner if there exist 

a set of 9 contiguous pixels in the circle which are all brighter 

than the intensity of the candidate pixel Ip plus a threshold t, 

or all darker than Ip-t, as illustrated in next figure.  

  
Fig. 3 Fast Corner detection 

For the line-based SLAM feature, the line segments are 

extracted as follow: First Canny edge detector is used to 

extract edges, and then edges are split into points at high 

curvatures. Finally, segments whose length is less than 20 

pixels are discarded and lines are fitted to the split edges using 

the least squares method. Next figure shows an example of 

the line processing result for the input image. 

 
Fig. 4 An example of line extraction from a sample image 

C. Corridor Environment 

The first experiment was conducted in an indoor corridor 

environment and the typical input images are shown in next 

figure. The corridor environment is featured by the narrow 

navigation path, small number of point features, and rich line 

features. The floor is flat and decorated with rectangular black 

blocks. Each block has a width of 0.45m and they are spaced 

about 2.3m apart. The robot started from the lower part of the 

left corridor, and travelled in a loop through the interior of the 

building. The entire rectangular path has dimensions of 

approximately 11.5×24m, and the robot was manually driven 

during the experiment. 

 
Fig. 5 Image samples from the corridor environment 

The odometer readings collected during our experiment are 

plotted in the next figure for reference. The robot was 

calibrated before the experiment, and accordingly it showed 
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a straight trajectory when it was traveling forward; however, 

it showed a strong tendency of turning right when changing 

its direction. As a result, the whole path shows a severe trend 

of spinning inward, and forms a twisted rectangle. 

 
Fig. 6 Plotted odometer data from the corridor 

environment 

Next figure shows the result of the corridor SLAM. Unlike 

the figure with the odometer readings, in the resulting SLAM 

map, the tendency of turning right was significantly 

decreased, and much of the twisted path is correctly revised. 

 
Fig. 7 Robot trajectory of the corridor SLAM 

Including line features in the 3D SLAM map has an apparent 

advantage than using only point features. As can be seen from 

next figure, the line features convey important information of 

the surroundings such as navigable areas, contours of doors, 

entrances, corners, and so on. The rich map does not only 

assist the SLAM system in achieving successful localization, 

but the map itself can accommodate as much of the structural 

properties of the surroundings as possible. The rich map plays 

an important role in connecting the metric map with the 

semantic map to provide more useful services to human. 

 
Fig. 8 The 3D map of the corridor SLAM 

 

D. Laboratory Environment 

The laboratory dataset was taken in a laboratory of the 

Robotics Corporation. Since the camera was placed at a low 

height, the lower part of the input image is occupied by no 

meaning region of floor plane, as can be seen from the next 

figure. This means placing the camera at a low height is 

challenging for SLAM in an indoor environment, since fewer 

features could be employed in the SLAM process. The 

laboratory dataset is also featured by the cluttered 

environment, with small number of line features.  

 
Fig. 9 Image samples from the laboratory environment 

For a 3D point feature, providing parallax means that the 

camera should deviate from the line connecting the point to 

the position from which the point feature was initially 

observed. On the other hand, for a 3D line feature, providing 

parallax means that the camera must deviate from the plane 

made by joining the line feature to the position of the initial 

observation. This implies that using lines as SLAM features 

has more constraints compared to using point features, and 

some lines are prone to remaining as immature features since 

the uncertainty of the line feature does not converge to a 

reliable threshold. This result is clearly reflected in the next 

figure of the 3D SLAM resulting from the laboratory dataset. 

Compared to the corridor environment, the number of the 

converged lines is apparently diminished; however, the point 

number is much higher than the corridor case. This is caused 

by the open and cluttered laboratory environment.  

 
 

E. Office Environment 

The laboratory dataset was also taken from an office of the 

Robotics Corporation. Like in the case of the laboratory 

dataset, the lower part of the input image is also occupied by 

texture-less region. Compared to the laboratory environment, 

the office is featured by the fewer point features and richer 

line features.  
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Fig. 10 Image samples from the office environment 

As shown in the next figure, the resulting 3D SLAM map of 

the office dataset clearly conveys what we have explained in 

the previous paragraph about the characteristic of the office 

environment. Compared to the 3D map of the laboratory 

environment, there are fewer point features in the map; even 

though the number of line features are more than the 

laboratory dataset, however, it is still less than the case of the 

corridor environment. This is caused by the fact: the office 

environment is usually more open than the corridor 

environment. This implies that the line features observed by 

the robot experience less parallax than it is located in a narrow 

corridor. 

  
Fig. 11 The 3D map of the office SLAM 

The final demo was conducted in the laboratory environment. 

The next figure shows the resulting 3D map. 

 

 
Fig. 12 The 3d map of the final demo 

The following figure shows the top view of the resulting map. 

  
Fig. 13 The top view of the resulting map 

V. CONCLUSION 

In this work, we propose the use of heterogeneous visual 

landmarks, points and line segments, to achieve effective 

cooperation in indoor SLAM environments. In order to 

achieve un-delayed initialization required by the bearing-only 

observations, the well-known inverse-depth parameterization 

is adopted to estimate 3D points. Similarly, to estimate 3D 

line segments, we present a novel parameterization based on 

anchored Plücker coordinates, to which extensible endpoints 

are added. 

To overcome the inconsistency problem inherently hide in the 

standard EKF-SLAM system, we have decided to adopt the 

sensor-centered Extended Kalman Filter. Contrary to the 

standard EKF, where estimates are always referred to a world 

reference frame, the sensor-centered approach represents all 

feature locations and the camera motion in a reference frame 

local to the current camera. The typical correlated feature-

sensor uncertainty arising from the uncertain camera location 

is transferred into uncertainty in the world reference frame, 

resulting in lower variances for the camera and map features, 

and thus in smaller linearization errors. Another characteristic 

of our algorithm is the use of 1-point RANSAC for EKF 

estimation; which in the case of the EKF with tightly 

correlated priors is enough to discard spurious matches. A 

reduction in the number of random hypotheses that are 

needed as in our approach, comes as a result of incorporating 

into the motion model some restrictions on the allowed 

motion; specifically planar motion and a large radius of 

curvature typical of robot motion is assumed. The extra 

information available from a motion model to aid matching is 

dealt with in a much more general manner, and we are able to 

cope with smooth camera motion with the full robot motion. 

To validate the efficiency of our proposed Indoor Visual 

SLAM system, we conducted three sets of experiments with 

real sensory data collected from differently characterized 

environments. With the same parameter setting, we found that 

the line features are more easily initialized in the corridor 

environment, and the point feature is more suitable for the 

cluttered laboratory environment. All the experimental results 

show that our developed Indoor Visual SLAM system is 

sufficient for mapping a moderately sized, structured indoor 

building environment. 

In future work, we will consider improving the line feature 

matching by using a globally distinguishable descriptor, and 
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will implement the loop closure algorithm for both the point 

and the line features. To solve the scalability problem and to 

improve the accuracy of the resulting SLAM map, we also 

plan transferring the core SLAM algorithm from the extended 

Kalman filtering to the bundle adjustment techniques. 
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