
Engineering and Technology Journal e-ISSN: 2456-3358

Volume 10 Issue 05 May-2025, Page No.- 4662-4671

DOI: 10.47191/etj/v10i05.02, I.F. – 8.482

© 2025, ETJ

4662 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

Design a Hierarchical Resource Allocating Approach by Using Dual Q-

Learning in Deep Reinforcement Algorithm

Seyed Danial Alizadeh Javaheri1, Reza Ghaemi2, Hossein Monshizadeh Naeen3
1,3Department of Computer Engineering, Ne.C., Islamic Azad University, Neyshabur, Iran.

2Department of Computer Engineering, Qu.C., Islamic Azad University, Quchan, Iran.

ABSTRACT: With the advent of the Internet of Things (IoT), the number of devices that work in these environments has greatly

increased, which has caused major changes in the structure of data processing and information storage. In this regard, cloud

computing is an Internet-based computing platform that provides the necessary processing resources for users. However, due to the

ever-increasing volume, speed and communication technologies, the current model of cloud processing can hardly provide

satisfactory performance quality. So, proper management of the incoming requests is very critical for the continuous operation. In

this project, in order to increase the speed of resource allocation operation, virtual machines are ranked by game theory, which

significantly reduces the time and computational complexity of the whole process. The combination of these three approaches and

their integration in sequence increases the speed of allocation performance and reduces the costs associated with it. In this article,

two characteristics of activity completion time and service quality have been evaluated. According to the obtained results, applying

the proposed structure on the Borg dataset provided by Google has yielded results in the range of more than 35% for reduction in

CPU usage cost compared to other existing methods.

KEYWORDS: Hierarchical Approach, Dual Q-Learning, Deep Reinforcement Learning, Game Theory

INTRODUCTION

In order to achieve an optimal level for quality of service

(QoS) in the IoT structure, the cloud computing model has

been changed into “Fog processing” which is defined as

follows [1]:

"Fog processing is a virtual platform that is able to provide

processing services, storage and network functions between

equipment’s located on the edge and traditional cloud centers.

»

In fog space, facilities that can provide resources at the edge

of the network are called fog nodes (FN). Indeed, tasks are

distributed on the fog nodes at the edge of the network for

increasing the efficiency. Therefore, it is necessary to use a

series of buffers in the fog environment for this purpose. In

this case, the buffers have a number of physical machines

(PM) which themselves consist of a number of virtual

machines (VM) and in this inter-layer structure they can

respond to the corresponding requests in the IoT

environment. By using the fog space, although the response

span is improved, but the limitations in the processing

resources is becoming serious challenge [2-4].

Fog Computing (FC) has emerged as a novel paradigm to

address the aforementioned challenges. Its infrastructure

consists of a large collection of heterogeneous and distributed

devices such as routers, access points, cameras, vehicles, and

smartphones which located in close proximity to end users.

These devices are capable of communicating and cooperating

with one another to perform storage and computational tasks

requested by end users. The proximity of FC devices to end

users enables time-sensitive applications to execute their

operations with reduced communication traffic over core

network links. In this architecture, devices that provide

computational, storage, or networking capabilities are

referred to as FNs. FNs can be deployed in dedicated

environments where all of their resources are exclusively

reserved for FC purposes, or in shared environments, where

they perform their primary functions while also offering their

remaining capacity to other platforms.

In real-time scheduling environments, researchers often need

to handle a set of jobs comprising a variable number of

parallel tasks. When these tasks are executed in parallel, they

must share computational resources and collectively

determine the final outcome of the entire job. For example, in

Apache Hadoop systems based on cloud infrastructure, a

program is decomposed into multiple mapping sub-tasks and

dispatched to the cloud, which ultimately requires

coordinated scheduling as a complete set. Similarly,

distributed relational database queries, Monte Carlo

simulations, and Blast searches are just a few examples of

such workload patterns. In [5], a parallel task scheduling

method based on deep reinforcement learning (DRL) is

proposed to enhance resource utilization in computing

platforms and to ensure QoS. This method is optimized using

practical data. However, when DRL algorithms are directly

https://doi.org/10.47191/etj/v10i05.02

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4663 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

applied to multi-task allocation problems, the DRL agent

tends to uniformly learn a single resource allocation strategy

for all tasks, which may lead to suboptimal performance,

especially when task diversity and scalability are not taken

into account. Moreover, the size of the action space grows

exponentially with the number of processing nodes and tasks,

introducing significant complexity and posing additional

challenges to efficient resource allocation.

In this project, game theory is utilized to enable the system to

rapidly adopt an effective strategy for optimal resource

allocation by learning from its past performance. In this

context, DRL is employed for allocating heterogeneous tasks

among users, leveraging its real-time adaptability and high

flexibility. On the other hand, for tasks that require low

latency, awareness of user location, and mobility support, it

is essential to integrate fog computing with cloud

infrastructure. This combination allows for efficient

utilization of edge-layer network resources. The results

demonstrate that the proposed approach leads to more than a

35% reduction in CPU usage cost compared to other existing

methods.

The main contributions of this paper are as follows:

- Designing an innovative three-level hierarchical

model in order to optimize the allocation of

resources

- Applying a dual Q-learning approach in order to

reduce time-spatial complexity and improve

allocating rate

- Minimizing energy consumption based on using

DRL and dual Q-learning algorithm

LITERATURE REVIEW

- Optimal resource allocation

In [6], an optimal task allocation problem is presented in

which the objective is to maximize the number of user’s

requested tasks while considering deadlines. The authors

have also proven that the optimal task allocation problem is

NP-hard, and therefore, linear programming techniques and

greedy algorithms must be employed to obtain a near-optimal

solution. In [7], a Deep Q-Network (DQN) approach is used

for resource allocation in mobile edge computing (MEC). The

optimization system is designed to minimize energy cost,

computational cost, and latency. However, in this study, task

allocation is performed offline, and due to the high latency of

the proposed method, it is not well-suited for real-time or

online task allocation scenarios. In [8], fog computing is

employed for task allocation. The key evaluation criteria

include quality of service, bandwidth utilization, and latency

reduction. A deep learning model is used to define the reward

function for decision-making. The main challenge identified

in this study is the assumption of task homogeneity. In [9], a

deep reinforcement learning approach is utilized to find the

optimal solution for resource allocation. The proposed

method employs a double deep Q-network (DDQN) to model

the problem as a path planning challenge. This method is

location-dependent and sensitive to the timing of events,

while also considering resource constraints in the objective of

maximizing travel distance. Overall, one of the major

challenges encountered during agent training using policy

gradient algorithms is the risk of losing the optimization

objective due to unstable agent performance. Recovering

from such scenarios is particularly difficult, as the agent may

begin to follow suboptimal trajectories and use them to

update its policy, thereby reinforcing ineffective behaviors.

In such situations, policy-based algorithms are no longer able

to effectively utilize the available data, rendering these

samples inefficient for training. To address this issue, various

types of planning models have been proposed to simulate

real-world conditions. Among them, task queue models have

been introduced to describe the state of task generation and

the temporary storage (buffer) in fog and cloud nodes [10–

13].

Q-learning applications

In general, the RL algorithm provides an advanced solution

for complex decision-making processes. The quality of the

actions are usually evaluated by the amount of reward

expected for future time steps. In this situation, value

functions determine actions and allow them to select strategy

according to their surrounding environment. There are many

factors such as the certainty of actions or results, the ability

to estimate the state after performing each action, the training

of the agent by observer or only based on performing actions

which can influence the choice of strategy. In other words,

the main idea in the reinforcement learning method is to train

the agent based on the changes that occur in the environment.

One of the most common techniques used to determine the

optimal policy in reinforcement learning methods is the use

of Q-learning algorithm. This algorithm does not need a

model and uses the value of Q (st,at) stored in the Q table to

select the action. This algorithm has been used in various

fields including advanced industrial processes, network

control, game theory, robotics, operational search, control

theory and image recognition. For example, in stochastic

cooperative game theory, Q learning algorithm is used to

maximize the profit of the whole system. By combining game

theory and Q-learning, effective resource allocating can be

implemented to improve the overall performance of the

system. In addition, Q learning has been used to improve

performance in games with a huge scale of information. In the

following, a brief overview of the various functions of the Q

learning algorithm is presented in Table 1. In fact, game

theories are able to find a balance point between players who

have opposite interests. On the other hand, due to the

importance of fast processing and prioritization with proper

delay, the two-player game theory is used, which has a high-

performance speed and a suitable convergence rate. In [14],

DQN approach has been used to allocate resources in edge

computing. The optimized system is designed based on

minimizing of energy, computational and delay cost.

However, the allocation of activities is done offline and due

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4664 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

to the long time delay in the presented approach, it cannot be

used well in online problems. In [15], the writers used fog

space to allocate requested tasks. The investigated criteria

included service quality, bandwidth and time delay reduction.

In this regard, the deep learning model has been used to define

the decision reward. One of the main drawbacks of this

research is considering only the homogeneous tasks.

Table 1: Comparison of Q-learning algorithms applications and limitations

Limitations Applications Ref

Without comparison of their performance in the

stated problems

A comprehensive review of reinforcement learning

algorithms

Using the Bellman equation to describe RL -

offline/online methods to determine a policy

[16]

Without providing technical details of Q-

learning algorithms - Lack of investigation

multi-agents functions

A comprehensive review of Q-learning algorithms -

Classification of methods based on the behavior of

agents

[17]

not providing a comprehensive mathematical

background

Lack of evaluation of introduced functions

Classification of multiple reinforcement learning

with focus on deep Q-learning

Evaluation of features, challenges and deep

reinforcement learning algorithms

[18]

lack of modeling of VM’s movement in their

dynamic conditions over time.

Using the Q-learning algorithm in order to converge

users' participation
[19]

METHODOLOGY

Q-learning algorithm

As a model-independent algorithm, Q-learning algorithm is

known as an efficient method for solving reinforcement

learning problems. For the mathematical modeling of this

algorithm, let π represent the policy. The function Q acting on

the state-action pair to determine the cumulative reward of the

agent through the Equ. (1). The complexity of implementing

Equ. (1) grows exponentially with the increase in the size of

the state space and operational space. In practical situations,

due to the high number of action-state pairs, it is not possible

to solve this challenge directly. So, one of the solutions to

overcome this problem is to approximate Q values using a

number of variables. In this situation, the reward function is

defined according to the Equ. (2). The γ coefficient is a

discount coefficient and helps to improve the convergence

[20]. In this structure, approximation plays an important role

[21-22].

Qπ(st, a) = (1 − α)Q(st, a)

+ α. (r(st, a)

+ γ max Q́ (st+1, á; π́))

(1)

r(st, a) : Reward of selecting action a in state st

γ : Discount factor

α : Learning rate

For this purpose, a special structure in the form of replay

memory has been created for estimation through training in

DRL. The purpose of using replay memory is to store a

number of records, each record containing (st, at, rt, st+1). In

this case, a part of the memory is used as a estimator part. The

mentioned system stores the record (st, at, rt, st+1) for each

step. During network learning, the same part of memory is

extracted from the total available memory so that Q network

learns from its past experiences. Due to the use of replay

memory, enough training data is available to extract the Q

value for the state-action pair (Equ. (3)). According to [21],

parameter w is defined as a vector that is used for regression

in deep neural network. In particular, the target network

output is updated by rewarding and is used as an index for the

performance evaluation (Equ. (4)). In this regard, a gradient

descent algorithm is used to minimize the difference between

the output of the target and estimation network (Equ. (5)) with

updating the w vector.

Rt = r(t+1) + γr(t+2) + γ2r(t+3) + ⋯ + γTr(t+T+1) = ∑ γkr(t+k+1)

T

k=0

(2)

Qπ(st, a, w)≈ Q∗(st, a) (3)

Qlab(st, a) = r(st, a) + γ. maxQtar(st+1, á, ẃ) (4)

Loss = (Qlab(st, a) − Qpre(st, a, w))
2

(5)

Dual Q-learning algorithm

In this section, the Double Q-learning algorithm is extended

to handle non-deterministic states. In the non-deterministic

case, it is first necessary to acknowledge that the outputs are

no longer deterministic. Under these conditions, Equ. (6) is

redefined for policy π as an expected discounted cumulative

reward formulation. The optimal policy π* is the one for

which the value function Vπ(s) is maximized for all states s.

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4665 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

Subsequently, the Q-function is modified according to Equ.

(7), where P(ś|s, a) denotes the probability of transitioning to

state ś after taking action a in state s. Under these conditions,

the Q-function is further refined as shown in Equ. (8). In

summary, the revised definition of Q(s,a) is the mathematical

expectation of the previously defined value under uncertainty.

At this point, it becomes necessary to rewrite the learning

rule. Since the previous learning rule does not converge in

this context, the new rule must be adjusted accordingly. In the

proposed approach, rather than discarding the previous

estimate, a weighted average between the previous and new

estimates is calculated.

According to Equ. (9), the necessary conditions for the

convergence of the Q-function are established. In this

equation, s and a represent the state and action occurring at

the n-th iteration, and visitsₙ(s, a) denotes the total number of

state–action pairs that have been visited up to iteration n. A

key aspect of this update rule is that it results in slower

changes compared to the previous rule. By reducing the value

of α, the Q̂(s, a) average term is updated more gradually.

Consequently, the rate of learning progression decreases over

time, and with an appropriate learning rate, convergence of

the Q-function can be achieved. In non-deterministic Markov

processes, it is assumed that the Q-learning agent operates

within a non-deterministic Markov Decision Process (MDP)

environment. For the reward values, an upper bound is

defined according to Equ. (11).

The Q-learning agent attempts to estimate the Q-function

using an arbitrary but bounded initial value. If n denotes an

iteration index, it indicates that action a has been executed for

the ith episode in state s, under conditions defined by Equa.

(12) and Equ. (13). Although it has been theoretically proven

that Q-learning and other reinforcement learning algorithms

converge under certain conditions, in practice, several

thousand iterations of the main loop are often required to

reach a satisfactory level of convergence. For instance, in the

TD-Gammon game, there are approximately 1.5 million

distinct games, each involving dozens of unique state–action

pairs.

(6)
Vπ(st) = E [∑ γirt+i

∞

i=0

]

(7) Q(s, a) = E[r(s, a) + γV∗(δ(s, a))] = E[r(s, a)] + γE[V∗(δ(s, a))]

= E [r(s, a)] + γ ∑ P(ś|s, a)

ś

V∗(ś)]

(8)
Q(s, a) = E [r(s, a)] + γ ∑ P(ś|s, a)

ś

maxQ(ś, á)]

(9) Q̂n(s, a) ← (1 − αn)Q̂n−1(s, a) + αn[r + γmaxQ̂n−1(ś, á)]

(10)
αn =

1

1 + visitsn(s, a)

(11) |r(s, a)| < c

(12)
∑ αn(i,s,t) = ∞

∞

i=1

(13)
∑[αn(i,s,t)]

2
= ∞

∞

i=1

Deep reinforcement learning

Deep learning, as a subset of machine learning, is a suitable

choice for online learning due to its capability to represent

complex intrinsic relationships between system inputs and

outputs. Therefore, it can be concluded that deep

reinforcement learning is a promising approach for

autonomous and real-time decision-making in the task

scheduling problem of IoT applications within a fog

computing environment. Reinforcement Learning (RL)

problems are typically defined with a single objective, which

is to maximize the cumulative rewards received by the agent.

The agent aims to optimize this objective function by

selecting appropriate actions, using reward signals to

reinforce its beneficial behaviors. In general, the RL

algorithm offers an enhanced solution for managing complex

decision-making processes. The core idea of RL is to train a

specific agent to adapt to dynamic changes occurring within

its environment. Under these conditions, the Q-learning

algorithm is employed to learn an optimal planned policy by

taking future decisions into account and evaluating the

feedback received from the cloud environment. Let us assume

that E = {e1, e2, … , en} represents the set of tasks requested

by a number of users, and V = {v1, v2, … , vm} denotes the set

of available VMs. Under this setting, the probabilistic

relationships described by Equ. (14) to Equ. (15) can be

defined accordingly.

P(ś|s, a) = P[st+1 = ś|st = s, at = a] (14)

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4666 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

∑ P(ś|s, a) = 1

śϵS

(15)

st : State of cloud-programmer at time step t in state S

at : Selected action of action space A at time step t

The policy planner π(a|s), which is responsible for mapping

states to actions, assigns each task to a VM. The immediate

reward of such an action is calculated as rt. The goal of the

cloud scheduler is to identify an optimal policy that

minimizes the cumulative reward. In the proposed

optimization-based scheduling model, the Q-learning method

is utilized to evaluate the feedback obtained from the cloud

environment in order to optimize future decision-making.

Under this framework, after collecting all rewards, the

average Q-value for each reward in every state is computed,

and the optimal value is derived using Equation (4-2).

ξij = (ψij + φij) × Pj (16)

Q∗(s, a) = min Qπ(s, a) (17)

ξij : Operation cost

ψij : Operation time

φij : Waiting time for assigning

Pj : Cost per unit of jth VM

The optimal value function is typically computed using the

Bellman optimization equation, as described in Equ. (18). In

this context, the resources allocated to each task are

predefined, and for each task assignment, the conditions

specified in Equ. (19) to Equ. (22) must be satisfied.

Subsequently, the cloud scheduler evaluates the Q-value

corresponding to the current policy. The policy is then

updated according to Equ. (23). Ultimately, the primary

objective of this model is to determine an optimal policy that

minimizes the reward for each state, as defined by Equ. (24).

(18) Q∗(s, a) = ∑ Υ

ś

(ś|s, a)[r + γmin. Q∗(ś, á)]

(19) ki
CPU ≤ CPUj

t

(20) ki
RAM ≤ RAMj

t

(21) ki
BW ≤ BWj

t

(22) ki
DS ≤ DSj

t

(23) π́ = arg min Qπ(s, a)

(24) Min E[Qπ∗(s, a)] ∀s ∈ S

: Required CPU ki
CPU

: Required RAM ki
RAM

: Required Bandwidth ki
BW

: Required Memory ki
DS

Objective Function

In the Deep Q-Learning method, a neural network is used to

represent the Q-function, denoted as Q(s,a;θ),

where θ represents the weights of the neural network. The Q-

network is trained during each episode by updating these

parameters to approximate the Q-values. Although neural

networks offer considerable flexibility, it is essential to

ensure the stability of Q-learning. To address this, a deep

neural network can be employed in DQNs instead of a simple

Q-function approximation, thereby enhancing both efficiency

and stability. Furthermore, the gradient descent algorithm can

be used to minimize the loss between the target network's

output and the predicted Q-values (Equ. 25), which in turn

updates the weights w. The main objective is to achieve

maximum coverage with minimal monitoring cost. In fact,

despite data redundancy in monitoring, higher accuracy in

data acquisition can be achieved. However, in applications

with lower coverage requirements, energy consumption can

be reduced by decreasing the activation rate of monitoring

nodes. In this way, a trade-off between data quality and

energy consumption is implemented. On the one hand, node

participation must be managed in a way that minimizes

energy consumption. Following a pricing mechanism based

on the degree of participation, the final solution is determined

using reinforcement learning, aiming to maximize coverage

while minimizing users’ energy consumption.

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4667 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

(25)

Dataset

In this paper, the data set obtained from the tracking of

requested tasks on Google's clusters is used, which was

collected in a period of 5 hr and 15 min [23]. Each request

that is defined as a job in the database consists of a number of

tasks, and the following characteristics are specified for each

task:

- Time: Max. execution time (sec)

- JobID: A unique code for each specific job

- TaskID: unique code for each specific task

- JobType: unique code to define the type of requested

job

- Normalized Task Core: the average no. of used

CPUs

- Normalized Task Memory: avg. memory used for

each individual task

In this model, the dataset is anonymized through various

methods. Job and task names are replaced with numeric

identifiers, and all timestamps are adjusted relative to an

anonymous reference point. Temporal information is reported

in 5-minute intervals. Memory usage and CPU core

utilization are normalized using an unknown linear

transformation. Moreover, no semantic information is

provided regarding the types of specified jobs. The trace

covers 75 time intervals (5-minute), comprising a total of

3,535,029 observations, 9,218 unique jobs, and 176,580

distinct tasks defined in the system. Table (2) shows the

specifications of 4 different types of work. It is worth noting

that the categories labeled as CPU exhibit a higher memory-

to-core ratio compared to those labeled as Mem. Table (3)

shows the correlation coefficient between types of work for

this collection. The value of coefficient changes varies from

1 (strong correlation) and 0 (no correlation) to -1 (strong anti-

correlation). Identifying such correlations is important, as

they reflect the type of Job, which can vary depending on user

requirements and operational conditions. In this situation,

high correlation coefficients show the number of related

tasks.

Table 2: Characteristics of 4 different types of requested Jobs [24]

Inactive

Long

Inactive

Short

Active Very

Short Mem

Active

Short CPU

Active

Long Mem

Active Long

CPU Few tasks

Active

Long CPU

Cluster

description

293 318 1260 72 6 93 37 Type 0

203 531 2280 12 0 104 36 Type 1

398 519 1276 692 28 237 90 Type 2

196 7 2 1 10 142 21 Type 3

Table 3: Correlation coefficient between different types of jobs [24]

Inactive

Long

Inactive

Short

Active Very

Short Mem

Active

Short CPU

Active

Long Mem

Active Long

CPU Few tasks

Active

Long CPU

Cluster

description

0.04 -0.04 0.01 0.26 -0.03 -0.06 -0.02 Type 0

-0.22 0.22 0.33 -0.09 -0.06 -0.11 -0.05 Type 1

-0.01 0.01 -0.27 -0.14 0.05 0.05 0.04 Type 2

0.32 -0.32 -0.24 -0.04 0.11 0.40 0.10 Type 3

Results evaluation

In the implementation of the game theory, it is necessary to

determine the strategies of the players. In this regard, DRL

has been used in order to determine the appropriate type of

strategy using the history of activities. To implement this

approach, the agents are well trained so that they can adopt

the right policy for any situation. The training stage of

choosing the optimal policy in the proposed method is done

by episodes. In each episode, a variable number of virtual

machines (VM) in the range between [50-350] and a fixed

number of task requesters (TR) in the range between [400-

1600] are considered. The resource allocation is done based

on the selected policy and continue until all the considered

tasks are allocated on the proper VMs. During training, the

exploration has been done through a fixed number of

episodes, which improves the strategy generation process in

the next time steps. In other words, a fixed number of

episodes (100) were simulated for each request in order to

explore the action space under the current policy and utilize

the resulting data to improve the overall activity policy. In

other words, the state, action, and reward information for each

episode was stored and used to calculate the cumulative

reward per episode. A total of 1000 iterations were simulated,

after which the average reward was computed. The minimum

reward, corresponding to the lowest cost, was considered

equivalent to full accuracy, and other accuracy values were

Loss = Qlab(s,a)-Q pre(s,a,w)()
2

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4668 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

subsequently derived. To evaluate the effectiveness of the

proposed method, 20% of the dataset was used, during which

the agent followed its learned policy by selecting the action

with the lowest reward.

It is worth noting that in some cases, values for resource

utilization and accuracy metrics were also obtained during the

simulations. Additionally, for all simulations (except for the

sensitivity analysis) λ was set to 10⁻⁵. The value of the λ

parameter influences the estimation behavior: the closer λ is

to 1, the algorithm tends to approximate the average of all

models; conversely, as λ approaches 0, a single model can

dominate the others, producing a final result that closely

aligns with the predictions of that specific model. It should be

noted that In practice, the optimal value can be determined

based on historical data, and subsequently, the value of λ can

be adjusted by analyzing the model error observed in the

system's past records. Figure 1 illustrates the minimum,

average, and maximum values of the effective error over a

specified episode.

Figure 1. Min., Mean and Max. values of the effective error (for 1 episode)

The red curve represents the performance of the standard Q-

learning algorithm. The green curve corresponds to the results

obtained using the Deep Reinforcement Learning (DRL)

algorithm, while the blue curve shows the results derived

from the application of the Double Q-learning algorithm

integrated with DRL. Figure 2 presents the results over the

entire observation period (6 hours and 15 minutes). For

comparison, the minimum, average, and maximum effective

error values predicted by the DRL method for CPU

consumption are 1448.4 W, 195.3 W, and 318.9 W,

respectively. In contrast, the corresponding values for the

standard Q-learning method are estimated at 173.1 W, 259.4

W, and 357.5 W, respectively.

Figure 2. Min., Mean and Max. values of the effective error (for total episodes)

The sensitivity of the proposed model to various parameters

is evaluated in the following section. To this end, the

sensitivity to γ is first analyzed, followed by an evaluation of

sensitivity to the λ parameter. The proposed method is applied

over the entire observation period, and the values of the two

parameters under investigation are systematically varied to

assess their impact on the results. Specifically, γ is varied

from 0 to 0.9 in increments of 0.1, while λ is varied from 10⁻⁷

to 10⁻³, with each step obtained by multiplying the previous

value by 10. The DRL method is executed for each

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4669 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

combination of these two parameters using the double Q-

learning algorithm. When γ values are close to zero, the

effective error tends to be high, as the DRL method in this

case has limited influence in improving the results when high

prediction errors are present. In other words, a γ value close

to zero prevents the DRL method from adequately adjusting

its behavior in subsequent time steps to reduce future errors.

When γ is close to zero, the effective error gradually

decreases with increasing λ, as this change facilitates faster

adaptation of the weight coefficients within the algorithm.

However, it should be noted that at high λ values (e.g., 10⁻³),

the model weights tend to become oscillatory. Additionally,

when γ is high (e.g., 0.9) and λ is low, the effective error

significantly increases. Because under such conditions, the

DRL method performs predictions over very short time steps,

and the weight coefficients adjust very slowly. Conversely,

increasing λ in the high γ leads to a reduction in the effective

error. Nonetheless, the weight coefficients may still undergo

substantial fluctuations due to discrepancies between the

predicted and actual system behavior. The γ and λ values used

in the previous simulation section do not necessarily yield the

absolute minimum effective error. However, they offer a

good balance by maintaining a low error while ensuring that

the rate of change in weight coefficients remains moderate.

Subsequently, the results obtained using the DRL method are

compared with those from the standard Q-learning algorithm.

In Figure 3, the performance of standard Q-learning over the

entire observation period is presented, followed by Figure 4,

which illustrates the outcomes of applying the combined DRL

and double Q-learning approach.

Figure 3. Tracking the reference weighting signal (simple Q-learning)

Figure 4. Tracking the reference weighting signal (double Q-learning + DRL)

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4670 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

CONCLUSION

One of the essential requirements of all computing systems,

which also contributes to improved network performance, is

efficient resource management and task scheduling. The

primary objective of this study is to reduce the average

service delay for IoT applications in a cloud-fog computing

environment. For this target, the study proposes a novel task

allocation method by integrating deep reinforcement learning

(DRL) with the double Q-learning algorithm within a fog-

based IoT framework. Due to the dynamic nature of modern

networks and the complexity of accurately modeling them,

solving the scheduling problem requires an online and

adaptive approach. The proposed method is designed to

autonomously develop an effective scheduling strategy over

time, based on prior experience. In the proposed approach,

deep learning is utilized to estimate the level of user

participation in the task allocation process. Based on these

estimations, a pricing mechanism is applied, and the final

solution is derived using reinforcement learning techniques

that aim to maximize coverage and minimize the energy

consumption of participating users. According to the obtained

results, applying the proposed structure on the Borg dataset

provided by Google has yielded results in the range of more

than 90% for the optimal allocation of tasks to the considered

virtual machines, which can be considered as an indicator to

prove the effectiveness of the proposed approach.

REFERENCES

1. Bonomi, Flavio, Rodolfo Milito, Jiang Zhu, and

Sateesh Addepalli. "Fog computing and its role in

the internet of things." In Proceedings of the first

edition of the MCC workshop on Mobile cloud

computing, pp. 13-16. 2012.

2. Osanaiye, Opeyemi, Shuo Chen, Zheng Yan,

Rongxing Lu, Kim-Kwang Raymond Choo, and

Mqhele Dlodlo. "From cloud to fog computing: A

review and a conceptual live VM migration

framework." IEEE Access 5 (2017): 8284-8300.

3. Yi, Shanhe, Zijiang Hao, Zhengrui Qin, and Qun Li.

"Fog computing: Platform and applications."

In 2015 Third IEEE workshop on hot topics in web

systems and technologies (HotWeb), pp. 73-78.

IEEE, 2015.

4. Chiang, Mung, and Tao Zhang. "Fog and IoT: An

overview of research opportunities." IEEE Internet

of things journal 3, no. 6 (2016): 854-864.

5. Zhang, Lingxin, Qi Qi, Jingyu Wang, Haifeng Sun,

and Jianxin Liao. "Multi-task deep reinforcement

learning for scalable parallel task scheduling."

In 2019 IEEE International Conference on Big Data

(Big Data), pp. 2992-3001. IEEE, 2019.

6. Cheng, Mingxi, Ji Li, and Shahin Nazarian. "DRL-

cloud: Deep reinforcement learning-based resource

provisioning and task scheduling for cloud service

providers." In 2018 23rd Asia and South pacific

design automation conference (ASP-DAC), pp. 129-

134. IEEE, 2018.

7. Ali, Tariq, Umar Draz, Sana Yasin, Javeria Noureen,

Ahmad Shaf, and Munwar Ali. "An Efficient

Participant's Selection Algorithm for

Crowdsensing." Int. J. Adv. Comput. Sci. Appl 9

(2018): 399-404.

8. Graesser, Laura, and Wah Loon Keng. Foundations

of deep reinforcement learning: theory and practice

in Python. Addison-Wesley Professional, 2019.

9. Kumar, Neetesh, Syed Shameerur Rahman, and

Navin Dhakad. "Fuzzy inference enabled deep

reinforcement learning-based traffic light control for

intelligent transportation system." IEEE

Transactions on Intelligent Transportation

Systems (2020).

10. Nan, Yucen, Wei Li, Wei Bao, Flavia C. Delicato,

Paulo F. Pires, and Albert Y. Zomaya. "A dynamic

tradeoff data processing framework for delay-

sensitive applications in cloud of things

systems." Journal of Parallel and Distributed

Computing 112 (2018): 53-66.

11. Li, He, Kaoru Ota, and Mianxiong Dong. "Deep

reinforcement scheduling for mobile crowdsensing

in fog computing." ACM Transactions on Internet

Technology (TOIT) 19, no. 2 (2019): 1-18.

12. Huang, Liang, Xu Feng, Cheng Zhang, Liping Qian,

and Yuan Wu. "Deep reinforcement learning-based

joint task offloading and bandwidth allocation for

multi-user mobile edge computing." Digital

Communications and Networks 5, no. 1 (2019): 10-

17.

13. Zhai, Junyong. "Dynamic output-feedback control

for nonlinear time-delay systems and applications to

chemical reactor systems." IEEE Transactions on

Circuits and Systems II: Express Briefs 66, no. 11

(2019): 1845-1849.

14. Huang, Liang, Xu Feng, Cheng Zhang, Liping Qian,

and Yuan Wu. "Deep reinforcement learning-based

joint task offloading and bandwidth allocation for

multi-user mobile edge computing." Digital

Communications and Networks 5, no. 1 (2019): 10-

17.

15. Graesser, Laura, and Wah Loon Keng. Foundations

of deep reinforcement learning: theory and practice

in Python. Addison-Wesley Professional, 2019.

16. Liu, Yan, Bin Guo, Yang Wang, Wenle Wu, Zhiwen

Yu, and Daqing Zhang. "TaskMe: Multi-task

allocation in mobile crowd sensing." In Proceedings

of the 2016 ACM international joint conference on

pervasive and ubiquitous computing, pp. 403-414.

2016.

17. Chen, Jianwei, Huadong Ma, Dong Zhao, and David

SL Wei. "Participant density-independent location

privacy protection for data aggregation in mobile

“Design a Hierarchical Resource Allocating Approach by Using Dual Q-Learning in Deep Reinforcement Algorithm”

4671 , ETJ Volume 10 Issue 05 May 2025 1Seyed Danial Alizadeh Javaheri

crowd-sensing." Wireless Personal

Communications 98 (2018): 699-723.

18. Buhussain, A. A., R. E. D. Grande, and A.

Boukerche. "Performance analysis of Bio-Inspired

scheduling algorithms for cloud." In IEEE

International parallel and distributed processing

symposium workshops, pp. 776-785. 2016.

19. Zhang, Jialin, Xianxian Li, Zhenkui Shi, and Cong

Zhu. "A reputation-based and privacy-preserving

incentive scheme for mobile crowd sensing: a deep

reinforcement learning approach." Wireless

Networks (2022): 1-14.

20. Yu, Yan, Qian Shi, and Hak-Ke۱ung Lam. "Fuzzy

sliding mode control of a continuum manipulator."

In 2018 IEEE International Conference on Robotics

and Biomimetics (ROBIO), pp. 2057-2062. IEEE,

2018.

21. Nair, Arun, Praveen Srinivasan, Sam Blackwell,

Cagdas Alcicek, Rory Fearon, Alessandro De Maria,

Vedavyas Panneershelvam et al. "Massively parallel

methods for deep reinforcement learning." arXiv

preprint arXiv:1507.04296(2015).

22. Liu, Ruishan, and James Zou. "The effects of

memory replay in reinforcement learning." In 2018

56th annual allerton conference on communication,

control, and computing (Allerton), pp. 478-485.

IEEE, 2018.

23. Chen, Yanpei, Archana Sulochana Ganapathi, Rean

Griffith, and Randy H. Katz. "Analysis and lessons

from a publicly available google cluster

trace." EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2010-95 94

(2010).

24. Kiumarsi, Bahare, Kyriakos G. Vamvoudakis,

Hamidreza Modares, and Frank L. Lewis. "Optimal

and autonomous control using reinforcement

learning: A survey." IEEE transactions on neural

networks and learning systems 29, no. 6 (2017):

2042-2062.

