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ABSTRACT: With the advent of the Internet of Things (IoT), the number of devices that work in these environments has greatly 

increased, which has caused major changes in the structure of data processing and information storage. In this regard, cloud 

computing is an Internet-based computing platform that provides the necessary processing resources for users. However, due to the 

ever-increasing volume, speed and communication technologies, the current model of cloud processing can hardly provide 

satisfactory performance quality. So, proper management of the incoming requests is very critical for the continuous operation. In 

this project, in order to increase the speed of resource allocation operation, virtual machines are ranked by game theory, which 

significantly reduces the time and computational complexity of the whole process. The combination of these three approaches and 

their integration in sequence increases the speed of allocation performance and reduces the costs associated with it. In this article, 

two characteristics of activity completion time and service quality have been evaluated. According to the obtained results, applying 

the proposed structure on the Borg dataset provided by Google has yielded results in the range of more than 35% for reduction in 

CPU usage cost compared to other existing methods.  
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INTRODUCTION 

In order to achieve an optimal level for quality of service 

(QoS) in the IoT structure, the cloud computing model has 

been changed into “Fog processing” which is defined as 

follows [1]: 

"Fog processing is a virtual platform that is able to provide 

processing services, storage and network functions between 

equipment’s located on the edge and traditional cloud centers. 

» 

In fog space, facilities that can provide resources at the edge 

of the network are called fog nodes (FN). Indeed, tasks are 

distributed on the fog nodes at the edge of the network for 

increasing the efficiency. Therefore, it is necessary to use a 

series of buffers in the fog environment for this purpose. In 

this case, the buffers have a number of physical machines 

(PM) which themselves consist of a number of virtual 

machines (VM) and in this inter-layer structure they can 

respond to the corresponding requests in the IoT 

environment. By using the fog space, although the response 

span is improved, but the limitations in the processing 

resources is becoming serious challenge [2-4].  

Fog Computing (FC) has emerged as a novel paradigm to 

address the aforementioned challenges. Its infrastructure 

consists of a large collection of heterogeneous and distributed 

devices such as routers, access points, cameras, vehicles, and 

smartphones which located in close proximity to end users. 

These devices are capable of communicating and cooperating 

with one another to perform storage and computational tasks 

requested by end users. The proximity of FC devices to end 

users enables time-sensitive applications to execute their 

operations with reduced communication traffic over core 

network links. In this architecture, devices that provide 

computational, storage, or networking capabilities are 

referred to as FNs. FNs can be deployed in dedicated 

environments where all of their resources are exclusively 

reserved for FC purposes, or in shared environments, where 

they perform their primary functions while also offering their 

remaining capacity to other platforms. 

In real-time scheduling environments, researchers often need 

to handle a set of jobs comprising a variable number of 

parallel tasks. When these tasks are executed in parallel, they 

must share computational resources and collectively 

determine the final outcome of the entire job. For example, in 

Apache Hadoop systems based on cloud infrastructure, a 

program is decomposed into multiple mapping sub-tasks and 

dispatched to the cloud, which ultimately requires 

coordinated scheduling as a complete set. Similarly, 

distributed relational database queries, Monte Carlo 

simulations, and Blast searches are just a few examples of 

such workload patterns. In [5], a parallel task scheduling 

method based on deep reinforcement learning (DRL) is 

proposed to enhance resource utilization in computing 

platforms and to ensure QoS. This method is optimized using 

practical data. However, when DRL algorithms are directly 
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applied to multi-task allocation problems, the DRL agent 

tends to uniformly learn a single resource allocation strategy 

for all tasks, which may lead to suboptimal performance, 

especially when task diversity and scalability are not taken 

into account. Moreover, the size of the action space grows 

exponentially with the number of processing nodes and tasks, 

introducing significant complexity and posing additional 

challenges to efficient resource allocation.  

In this project, game theory is utilized to enable the system to 

rapidly adopt an effective strategy for optimal resource 

allocation by learning from its past performance. In this 

context, DRL is employed for allocating heterogeneous tasks 

among users, leveraging its real-time adaptability and high 

flexibility. On the other hand, for tasks that require low 

latency, awareness of user location, and mobility support, it 

is essential to integrate fog computing with cloud 

infrastructure. This combination allows for efficient 

utilization of edge-layer network resources. The results 

demonstrate that the proposed approach leads to more than a 

35% reduction in CPU usage cost compared to other existing 

methods.  

The main contributions of this paper are as follows: 

- Designing an innovative three-level hierarchical 

model in order to optimize the allocation of 

resources 

- Applying a dual Q-learning approach in order to 

reduce time-spatial complexity and improve 

allocating rate 

- Minimizing energy consumption based on using 

DRL and dual Q-learning algorithm 

 

LITERATURE REVIEW 

- Optimal resource allocation 

In [6], an optimal task allocation problem is presented in 

which the objective is to maximize the number of user’s 

requested tasks while considering deadlines. The authors 

have also proven that the optimal task allocation problem is 

NP-hard, and therefore, linear programming techniques and 

greedy algorithms must be employed to obtain a near-optimal 

solution. In [7], a Deep Q-Network (DQN) approach is used 

for resource allocation in mobile edge computing (MEC). The 

optimization system is designed to minimize energy cost, 

computational cost, and latency. However, in this study, task 

allocation is performed offline, and due to the high latency of 

the proposed method, it is not well-suited for real-time or 

online task allocation scenarios. In [8], fog computing is 

employed for task allocation. The key evaluation criteria 

include quality of service, bandwidth utilization, and latency 

reduction. A deep learning model is used to define the reward 

function for decision-making. The main challenge identified 

in this study is the assumption of task homogeneity. In [9], a 

deep reinforcement learning approach is utilized to find the 

optimal solution for resource allocation. The proposed 

method employs a double deep Q-network (DDQN) to model 

the problem as a path planning challenge. This method is 

location-dependent and sensitive to the timing of events, 

while also considering resource constraints in the objective of 

maximizing travel distance. Overall, one of the major 

challenges encountered during agent training using policy 

gradient algorithms is the risk of losing the optimization 

objective due to unstable agent performance. Recovering 

from such scenarios is particularly difficult, as the agent may 

begin to follow suboptimal trajectories and use them to 

update its policy, thereby reinforcing ineffective behaviors. 

In such situations, policy-based algorithms are no longer able 

to effectively utilize the available data, rendering these 

samples inefficient for training. To address this issue, various 

types of planning models have been proposed to simulate 

real-world conditions. Among them, task queue models have 

been introduced to describe the state of task generation and 

the temporary storage (buffer) in fog and cloud nodes [10–

13]. 

Q-learning applications 

In general, the RL algorithm provides an advanced solution 

for complex decision-making processes. The quality of the 

actions are usually evaluated by the amount of reward 

expected for future time steps. In this situation, value 

functions determine actions and allow them to select strategy 

according to their surrounding environment. There are many 

factors such as the certainty of actions or results, the ability 

to estimate the state after performing each action, the training 

of the agent by observer or only based on performing actions 

which can influence the choice of strategy. In other words, 

the main idea in the reinforcement learning method is to train 

the agent based on the changes that occur in the environment. 

One of the most common techniques used to determine the 

optimal policy in reinforcement learning methods is the use 

of Q-learning algorithm. This algorithm does not need a 

model and uses the value of Q (st,at) stored in the Q table to 

select the action. This algorithm has been used in various 

fields including advanced industrial processes, network 

control, game theory, robotics, operational search, control 

theory and image recognition. For example, in stochastic 

cooperative game theory, Q learning algorithm is used to 

maximize the profit of the whole system. By combining game 

theory and Q-learning, effective resource allocating can be 

implemented to improve the overall performance of the 

system. In addition, Q learning has been used to improve 

performance in games with a huge scale of information. In the 

following, a brief overview of the various functions of the Q 

learning algorithm is presented in Table 1. In fact, game 

theories are able to find a balance point between players who 

have opposite interests. On the other hand, due to the 

importance of fast processing and prioritization with proper 

delay, the two-player game theory is used, which has a high-

performance speed and a suitable convergence rate. In [14], 

DQN approach has been used to allocate resources in edge 

computing. The optimized system is designed based on 

minimizing of energy, computational and delay cost. 

However, the allocation of activities is done offline and due 
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to the long time delay in the presented approach, it cannot be 

used well in online problems. In [15], the writers used fog 

space to allocate requested tasks. The investigated criteria 

included service quality, bandwidth and time delay reduction. 

In this regard, the deep learning model has been used to define 

the decision reward. One of the main drawbacks of this 

research is considering only the homogeneous tasks. 

 

Table 1: Comparison of Q-learning algorithms applications and limitations 

Limitations Applications Ref 

Without comparison of their performance in the 

stated problems 

A comprehensive review of reinforcement learning 

algorithms  

Using the Bellman equation to describe RL - 

offline/online methods to determine a policy  

[16] 

Without providing technical details of Q-

learning algorithms - Lack of investigation 

multi-agents functions 

A comprehensive review of Q-learning algorithms - 

Classification of methods based on the behavior of 

agents 

[17] 

not providing a comprehensive mathematical 

background 

Lack of evaluation of introduced functions 

Classification of multiple reinforcement learning 

with focus on deep Q-learning 

Evaluation of features, challenges and deep 

reinforcement learning algorithms  

[18] 

lack of modeling of VM’s movement in their 

dynamic conditions over time. 

Using the Q-learning algorithm in order to converge 

users' participation  
[19] 

 

METHODOLOGY 

Q-learning algorithm 

As a model-independent algorithm, Q-learning algorithm is 

known as an efficient method for solving reinforcement 

learning problems. For the mathematical modeling of this 

algorithm, let π represent the policy. The function Q acting on 

the state-action pair to determine the cumulative reward of the 

agent through the Equ. (1). The complexity of implementing 

Equ. (1) grows exponentially with the increase in the size of 

the state space and operational space. In practical situations, 

due to the high number of action-state pairs, it is not possible 

to solve this challenge directly. So, one of the solutions to 

overcome this problem is to approximate Q values using a 

number of variables. In this situation, the reward function is 

defined according to the Equ. (2). The γ coefficient is a 

discount coefficient and helps to improve the convergence 

[20]. In this structure, approximation plays an important role 

[21-22].  

 

Qπ(st, a) = (1 − α)Q(st, a)

+ α. (r(st, a)

+ γ max Q́ (st+1, á; π́) ) 

(1) 

r(st, a) : Reward of selecting action a in state st 

γ : Discount factor 

α : Learning rate 

 

For this purpose, a special structure in the form of replay 

memory has been created for estimation through training in 

DRL. The purpose of using replay memory is to store a 

number of records, each record containing (st, at, rt, st+1).  In 

this case, a part of the memory is used as a estimator part. The 

mentioned system stores the record (st, at, rt, st+1)  for each 

step. During network learning, the same part of memory is 

extracted from the total available memory so that Q network 

learns from its past experiences. Due to the use of replay 

memory, enough training data is available to extract the Q 

value for the state-action pair (Equ. (3)). According to [21], 

parameter w is defined as a vector that is used for regression 

in deep neural network. In particular, the target network 

output is updated by rewarding and is used as an index for the 

performance evaluation (Equ. (4)). In this regard, a gradient 

descent algorithm is used to minimize the difference between 

the output of the target and estimation network (Equ. (5)) with 

updating the w vector. 

Rt =  r(t+1) + γr(t+2) + γ2r(t+3) + ⋯ + γTr(t+T+1) = ∑ γkr(t+k+1)

T

k=0

 

(2) 

Qπ(st, a, w)≈ Q∗(st, a) (3) 

Qlab(st, a) = r(st, a) + γ. maxQtar(st+1, á, ẃ) (4) 

Loss = (Qlab(st, a) − Qpre(st, a, w))
2

 
(5) 

 

Dual Q-learning algorithm 

In this section, the Double Q-learning algorithm is extended 

to handle non-deterministic states. In the non-deterministic 

case, it is first necessary to acknowledge that the outputs are 

no longer deterministic. Under these conditions, Equ. (6) is 

redefined for policy π as an expected discounted cumulative 

reward formulation. The optimal policy π* is the one for 

which the value function Vπ(s) is maximized for all states s. 
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Subsequently, the Q-function is modified according to Equ. 

(7), where P(ś|s, a) denotes the probability of transitioning to 

state ś after taking action a in state s. Under these conditions, 

the Q-function is further refined as shown in Equ. (8). In 

summary, the revised definition of Q(s,a) is the mathematical 

expectation of the previously defined value under uncertainty. 

At this point, it becomes necessary to rewrite the learning 

rule. Since the previous learning rule does not converge in 

this context, the new rule must be adjusted accordingly. In the 

proposed approach, rather than discarding the previous 

estimate, a weighted average between the previous and new 

estimates is calculated.  

According to Equ. (9), the necessary conditions for the 

convergence of the Q-function are established. In this 

equation, s and a represent the state and action occurring at 

the n-th iteration, and visitsₙ(s, a) denotes the total number of 

state–action pairs that have been visited up to iteration n. A 

key aspect of this update rule is that it results in slower 

changes compared to the previous rule. By reducing the value 

of α, the Q̂(s, a) average term is updated more gradually. 

Consequently, the rate of learning progression decreases over 

time, and with an appropriate learning rate, convergence of 

the Q-function can be achieved. In non-deterministic Markov 

processes, it is assumed that the Q-learning agent operates 

within a non-deterministic Markov Decision Process (MDP) 

environment. For the reward values, an upper bound is 

defined according to Equ. (11).  

The Q-learning agent attempts to estimate the Q-function 

using an arbitrary but bounded initial value. If n denotes an 

iteration index, it indicates that action a has been executed for 

the ith episode in state s, under conditions defined by Equa. 

(12) and Equ. (13). Although it has been theoretically proven 

that Q-learning and other reinforcement learning algorithms 

converge under certain conditions, in practice, several 

thousand iterations of the main loop are often required to 

reach a satisfactory level of convergence. For instance, in the 

TD-Gammon game, there are approximately 1.5 million 

distinct games, each involving dozens of unique state–action 

pairs. 

(6) 
Vπ(st) = E [∑ γirt+i

∞

i=0

]  

(7) Q(s, a) = E[r(s, a) + γV∗(δ(s, a))] = E[r(s, a)] + γE[V∗(δ(s, a))]

= E [r(s, a)] + γ ∑ P(ś|s, a)

ś

V∗(ś)] 

(8) 
Q(s, a) = E [r(s, a)] + γ ∑ P(ś|s, a)

ś

maxQ(ś, á)] 

(9) Q̂n(s, a) ← (1 − αn)Q̂n−1(s, a) + αn[r + γmaxQ̂n−1(ś, á)] 

(10) 
αn =

1

1 + visitsn(s, a)
 

(11) |r(s, a)| < c   

(12) 
∑ αn(i,s,t) = ∞

∞

i=1

 

(13) 
∑[αn(i,s,t)]

2
= ∞

∞

i=1

 

 

Deep reinforcement learning 

Deep learning, as a subset of machine learning, is a suitable 

choice for online learning due to its capability to represent 

complex intrinsic relationships between system inputs and 

outputs. Therefore, it can be concluded that deep 

reinforcement learning is a promising approach for 

autonomous and real-time decision-making in the task 

scheduling problem of IoT applications within a fog 

computing environment. Reinforcement Learning (RL) 

problems are typically defined with a single objective, which 

is to maximize the cumulative rewards received by the agent. 

The agent aims to optimize this objective function by 

selecting appropriate actions, using reward signals to 

reinforce its beneficial behaviors. In general, the RL 

algorithm offers an enhanced solution for managing complex 

decision-making processes. The core idea of RL is to train a 

specific agent to adapt to dynamic changes occurring within 

its environment. Under these conditions, the Q-learning 

algorithm is employed to learn an optimal planned policy by 

taking future decisions into account and evaluating the 

feedback received from the cloud environment. Let us assume 

that E = {e1, e2, … , en} represents the set of tasks requested 

by a number of users, and V = {v1, v2, … , vm} denotes the set 

of available VMs. Under this setting, the probabilistic 

relationships described by Equ. (14) to Equ. (15) can be 

defined accordingly. 

 

P(ś|s, a) = P[st+1 = ś|st = s, at = a] (14) 
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∑ P(ś|s, a) = 1

śϵS

 
(15) 

st : State of cloud-programmer at time step t in state S 

at : Selected action of  action space A at time step t 

 

The policy planner π(a|s), which is responsible for mapping 

states to actions, assigns each task to a VM. The immediate 

reward of such an action is calculated as rt. The goal of the 

cloud scheduler is to identify an optimal policy that 

minimizes the cumulative reward. In the proposed 

optimization-based scheduling model, the Q-learning method 

is utilized to evaluate the feedback obtained from the cloud 

environment in order to optimize future decision-making. 

Under this framework, after collecting all rewards, the 

average Q-value for each reward in every state is computed, 

and the optimal value is derived using Equation (4-2). 

 

ξij = (ψij + φij) × Pj (16) 

Q∗(s, a) = min   Qπ(s, a) (17) 

ξij : Operation cost  

ψij : Operation time  

φij : Waiting time for assigning 

Pj : Cost per unit of jth VM 

 

The optimal value function is typically computed using the 

Bellman optimization equation, as described in Equ. (18). In 

this context, the resources allocated to each task are 

predefined, and for each task assignment, the conditions 

specified in Equ. (19) to Equ. (22) must be satisfied. 

Subsequently, the cloud scheduler evaluates the Q-value 

corresponding to the current policy. The policy is then 

updated according to Equ. (23). Ultimately, the primary 

objective of this model is to determine an optimal policy that 

minimizes the reward for each state, as defined by Equ. (24). 

 

(18) Q∗(s, a) = ∑ Υ

ś

(ś|s, a)[r + γmin. Q∗(ś, á)] 

(19) ki
CPU ≤ CPUj

t 

(20) ki
RAM ≤ RAMj

t 

(21) ki
BW ≤ BWj

t 

(22) ki
DS ≤ DSj

t 

(23) π́ = arg min Qπ(s, a) 

(24) Min E[Qπ∗(s, a)]            ∀s ∈ S 

: Required CPU ki
CPU 

: Required RAM ki
RAM 

: Required Bandwidth ki
BW 

: Required Memory ki
DS 

 

Objective Function 

In the Deep Q-Learning method, a neural network is used to 

represent the Q-function, denoted as Q(s,a;θ), 

where θ represents the weights of the neural network. The Q-

network is trained during each episode by updating these 

parameters to approximate the Q-values. Although neural 

networks offer considerable flexibility, it is essential to 

ensure the stability of Q-learning. To address this, a deep 

neural network can be employed in DQNs instead of a simple 

Q-function approximation, thereby enhancing both efficiency 

and stability. Furthermore, the gradient descent algorithm can 

be used to minimize the loss between the target network's 

output and the predicted Q-values (Equ. 25), which in turn 

updates the weights w. The main objective is to achieve 

maximum coverage with minimal monitoring cost. In fact, 

despite data redundancy in monitoring, higher accuracy in 

data acquisition can be achieved. However, in applications 

with lower coverage requirements, energy consumption can 

be reduced by decreasing the activation rate of monitoring 

nodes. In this way, a trade-off between data quality and 

energy consumption is implemented. On the one hand, node 

participation must be managed in a way that minimizes 

energy consumption. Following a pricing mechanism based 

on the degree of participation, the final solution is determined 

using reinforcement learning, aiming to maximize coverage 

while minimizing users’ energy consumption. 
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(25) 

 
 

Dataset  

In this paper, the data set obtained from the tracking of 

requested tasks on Google's clusters is used, which was 

collected in a period of 5 hr and 15 min [23]. Each request 

that is defined as a job in the database consists of a number of 

tasks, and the following characteristics are specified for each 

task: 

- Time: Max. execution time (sec) 

- JobID: A unique code for each specific job 

- TaskID: unique code for each specific task 

- JobType: unique code to define the type of requested 

job 

- Normalized Task Core: the average no. of used 

CPUs 

- Normalized Task Memory: avg. memory used for 

each individual task 

 

In this model, the dataset is anonymized through various 

methods. Job and task names are replaced with numeric 

identifiers, and all timestamps are adjusted relative to an 

anonymous reference point. Temporal information is reported 

in 5-minute intervals. Memory usage and CPU core 

utilization are normalized using an unknown linear 

transformation. Moreover, no semantic information is 

provided regarding the types of specified jobs. The trace 

covers 75 time intervals (5-minute), comprising a total of 

3,535,029 observations, 9,218 unique jobs, and 176,580 

distinct tasks defined in the system. Table (2) shows the 

specifications of 4 different types of work. It is worth noting 

that the categories labeled as CPU exhibit a higher memory-

to-core ratio compared to those labeled as Mem. Table (3) 

shows the correlation coefficient between types of work for 

this collection. The value of coefficient changes varies from 

1 (strong correlation) and 0 (no correlation) to -1 (strong anti-

correlation). Identifying such correlations is important, as 

they reflect the type of Job, which can vary depending on user 

requirements and operational conditions. In this situation, 

high correlation coefficients show the number of related 

tasks. 

 

Table 2: Characteristics of 4 different types of requested Jobs [24] 

Inactive 

Long 

Inactive 

Short 

Active Very 

Short Mem 

Active 

Short CPU  

Active 

Long Mem 

Active Long 

CPU Few tasks 

Active 

Long CPU 

Cluster 

description 

293 318 1260 72 6 93 37 Type 0 

203 531 2280 12 0 104 36 Type 1 

398 519 1276 692 28 237 90 Type 2 

196 7 2 1 10 142 21 Type 3 

 

Table 3: Correlation coefficient between different types of jobs [24] 

Inactive 

Long 

Inactive 

Short 

Active Very 

Short Mem 

Active 

Short CPU 

Active 

Long Mem 

Active Long 

CPU Few tasks 

Active 

Long CPU 

Cluster 

description 

0.04 -0.04 0.01 0.26 -0.03 -0.06 -0.02 Type 0 

-0.22 0.22 0.33 -0.09 -0.06 -0.11 -0.05 Type 1 

-0.01 0.01 -0.27 -0.14 0.05 0.05 0.04 Type 2 

0.32 -0.32 -0.24 -0.04 0.11 0.40 0.10 Type 3 

 

Results evaluation 

In the implementation of the game theory, it is necessary to 

determine the strategies of the players. In this regard, DRL 

has been used in order to determine the appropriate type of 

strategy using the history of activities. To implement this 

approach, the agents are well trained so that they can adopt 

the right policy for any situation. The training stage of 

choosing the optimal policy in the proposed method is done 

by episodes. In each episode, a variable number of virtual 

machines (VM) in the range between [50-350] and a fixed 

number of task requesters (TR) in the range between [400-

1600] are considered. The resource allocation is done based 

on the selected policy and continue until all the considered 

tasks are allocated on the proper VMs. During training, the 

exploration has been done through a fixed number of 

episodes, which improves the strategy generation process in 

the next time steps. In other words, a fixed number of 

episodes (100) were simulated for each request in order to 

explore the action space under the current policy and utilize 

the resulting data to improve the overall activity policy. In 

other words, the state, action, and reward information for each 

episode was stored and used to calculate the cumulative 

reward per episode. A total of 1000 iterations were simulated, 

after which the average reward was computed. The minimum 

reward, corresponding to the lowest cost, was considered 

equivalent to full accuracy, and other accuracy values were 

Loss = Qlab(s,a)-Q pre(s,a,w)( )
2
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subsequently derived. To evaluate the effectiveness of the 

proposed method, 20% of the dataset was used, during which 

the agent followed its learned policy by selecting the action 

with the lowest reward.  

It is worth noting that in some cases, values for resource 

utilization and accuracy metrics were also obtained during the 

simulations. Additionally, for all simulations (except for the 

sensitivity analysis) λ was set to 10⁻⁵. The value of the λ 

parameter influences the estimation behavior: the closer λ is 

to 1, the algorithm tends to approximate the average of all 

models; conversely, as λ approaches 0, a single model can 

dominate the others, producing a final result that closely 

aligns with the predictions of that specific model. It should be 

noted that In practice, the optimal value can be determined 

based on historical data, and subsequently, the value of λ can 

be adjusted by analyzing the model error observed in the 

system's past records. Figure 1 illustrates the minimum, 

average, and maximum values of the effective error over a 

specified episode.  

 

 
Figure 1. Min., Mean and Max. values of the effective error (for 1 episode) 

 

The red curve represents the performance of the standard Q-

learning algorithm. The green curve corresponds to the results 

obtained using the Deep Reinforcement Learning (DRL) 

algorithm, while the blue curve shows the results derived 

from the application of the Double Q-learning algorithm 

integrated with DRL. Figure 2 presents the results over the 

entire observation period (6 hours and 15 minutes). For 

comparison, the minimum, average, and maximum effective 

error values predicted by the DRL method for CPU 

consumption are 1448.4 W, 195.3 W, and 318.9 W, 

respectively. In contrast, the corresponding values for the 

standard Q-learning method are estimated at 173.1 W, 259.4 

W, and 357.5 W, respectively. 

 
Figure 2. Min., Mean and Max. values of the effective error (for total episodes) 

 

The sensitivity of the proposed model to various parameters 

is evaluated in the following section. To this end, the 

sensitivity to γ is first analyzed, followed by an evaluation of 

sensitivity to the λ parameter. The proposed method is applied 

over the entire observation period, and the values of the two 

parameters under investigation are systematically varied to 

assess their impact on the results. Specifically, γ is varied 

from 0 to 0.9 in increments of 0.1, while λ is varied from 10⁻⁷ 

to 10⁻³, with each step obtained by multiplying the previous 

value by 10. The DRL method is executed for each 
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combination of these two parameters using the double Q-

learning algorithm. When γ values are close to zero, the 

effective error tends to be high, as the DRL method in this 

case has limited influence in improving the results when high 

prediction errors are present. In other words, a γ value close 

to zero prevents the DRL method from adequately adjusting 

its behavior in subsequent time steps to reduce future errors. 

When γ is close to zero, the effective error gradually 

decreases with increasing λ, as this change facilitates faster 

adaptation of the weight coefficients within the algorithm. 

However, it should be noted that at high λ values (e.g., 10⁻³), 

the model weights tend to become oscillatory. Additionally, 

when γ is high (e.g., 0.9) and λ is low, the effective error 

significantly increases. Because under such conditions, the 

DRL method performs predictions over very short time steps, 

and the weight coefficients adjust very slowly. Conversely, 

increasing λ in the high γ leads to a reduction in the effective 

error. Nonetheless, the weight coefficients may still undergo 

substantial fluctuations due to discrepancies between the 

predicted and actual system behavior. The γ and λ values used 

in the previous simulation section do not necessarily yield the 

absolute minimum effective error. However, they offer a 

good balance by maintaining a low error while ensuring that 

the rate of change in weight coefficients remains moderate. 

Subsequently, the results obtained using the DRL method are 

compared with those from the standard Q-learning algorithm. 

In Figure 3, the performance of standard Q-learning over the 

entire observation period is presented, followed by Figure 4, 

which illustrates the outcomes of applying the combined DRL 

and double Q-learning approach. 

 

 
Figure 3. Tracking the reference weighting signal (simple Q-learning) 

 
Figure 4. Tracking the reference weighting signal (double Q-learning + DRL)  
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CONCLUSION 

One of the essential requirements of all computing systems, 

which also contributes to improved network performance, is 

efficient resource management and task scheduling. The 

primary objective of this study is to reduce the average 

service delay for IoT applications in a cloud-fog computing 

environment. For this target, the study proposes a novel task 

allocation method by integrating deep reinforcement learning 

(DRL) with the double Q-learning algorithm within a fog-

based IoT framework. Due to the dynamic nature of modern 

networks and the complexity of accurately modeling them, 

solving the scheduling problem requires an online and 

adaptive approach. The proposed method is designed to 

autonomously develop an effective scheduling strategy over 

time, based on prior experience. In the proposed approach, 

deep learning is utilized to estimate the level of user 

participation in the task allocation process. Based on these 

estimations, a pricing mechanism is applied, and the final 

solution is derived using reinforcement learning techniques 

that aim to maximize coverage and minimize the energy 

consumption of participating users. According to the obtained 

results, applying the proposed structure on the Borg dataset 

provided by Google has yielded results in the range of more 

than 90% for the optimal allocation of tasks to the considered 

virtual machines, which can be considered as an indicator to 

prove the effectiveness of the proposed approach. 
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