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ABSTRACT: Accurate and timely determination of relationships among communicable diseases is crucial in taking precautionary 

measures to control and prevent the transmission of infectious diseases. This will inform the government to make important policies 

that will help provide effective patient treatments. This study employed the principal components analysis (PCA) method to explore 

and interpret the relationship among airborne communicable diseases: Tuberculosis (TB), chickenpox, and measles based on a 

medical dataset obtained from Bibiani Government Hospital, Ghana. The Kaiser criterion was employed to determine a suitable 

number of principal components (PCs) to feature in the statistical analysis. A scree plot diagram was also used to affirm the number 

of PCs needed in the analysis. Projection of diseases on PC planes was also used to interpret the relationships among the diseases. 

From the study, statistical results revealed that the first principal component (PC1), second principal component (PC2), and third 

principal component (PC3) performed significantly well in the disease interpretation by explaining a total variation of 46.70994%, 

30.61631%, and 22.67376, respectively of the useful information in the dataset. There were also marked strong correlations among 

the diseases concerning PCs. Due to the limited number of diseases considered, this study will serve as preliminary investigation on 

the use of PCA as a versatile and promising multivariate statistical technique that can be relied upon by public health experts and 

policymakers to interpret relationships among diseases and make informed decisions very well. 
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1. INTRODUCTION 

Communicable diseases have often been described as 

infectious and highly contagious. Exploring the relationship 

among communicable diseases helps in precautionary 

measures, and effective treatment at an early stage is helpful 

for patients. Over the years, several coordinated efforts by 

scientists to curb the marked spread of such infectious 

diseases have been explored. In this study, three of the most 

notable communicable diseases that remain the leading cause 

of death in Ghana, namely Tuberculosis (TB), chicken pox, 

and measles have been studied. The burden of these diseases, 

if not combated, will increase economic suffering, compound 

an already fragile healthcare infrastructure, and render the 

livelihood of the citizenry poor (Mettle et al., 2020; Whittaker 

et al., 2019; de-Graft Aikins et al., 2012).  

From the literature, researchers have frequently applied 

the multivariate statistical method as the most popular tool to 

analyse multivariate datasets since it reveals the important 

features of the dataset (Salem & Hussein, 2019; Ahmad et al., 

2018). In this study, principal components analysis (PCA) as 

an example of a multivariate statistical method was employed 

to explore and interpret the relationship among the three 

communicable diseases. This was achieved by reducing the 

dataset dimensionality without much loss of information. 

The main advantages of using the PCA in mathematical 

analogy and epidemiology include its suitability for 

visualisation, its ability to capture variation in complex 

datasets, low noise sensitivity, decreased requirements for 

capacity and memory, and increased efficiency given the 

processes taking place in a smaller dimension (Mohammed et 

al., 2016; Karamizadeh et al., 2013). 

Due to the above-mentioned advantages of the PCA, 

researchers have used it widely in many fields of study. For 

example, Shilaskar & Ghatol (2013) investigated two feature 

extraction techniques PCA and factor analysis (FA) on a 

medical dataset for heart disease classification. The 

techniques maintained the integrity of the dataset by 

improving the diagnosis performance. On the other hand, 

Yadav & Jat (2020) used the dimensionality reduction 

technique for chronic disease prediction. Their results 

showed a significant improvement in the prediction accuracy. 

Meghraoui et al. (2016) also applied PCA in the medical field 

to select the main voice principal components (PCs) of a 

person infected with Parkinson’s disease. Their results gave 

very promising prediction accuracy. In hydrology, Sharma et 

al. (2015) applied PCA to dimensionless geomorphic 

parameters to group the parameters under different 

components based on significant correlations. Results 
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revealed that some of the parameters were strongly correlated 

with the components, but texture ratio and hypsometric 

integral do not show a correlation with any of the 

components. Chen et al. (2020) used artificial neural 

networks (ANN) and PCA methods to build a cost prediction 

model in aviation. In the PCA, the eigenvalues of the first two 

PCs indicated that the PCs had the strongest interpretation of 

the original variable information and were retained as cost-

influencing variables to train the ANN model.  

From the enumerated review, as PCA has proven to be a 

versatile and reliable method, it would be prudent to adopt it 

and explore its frontiers further to analyse and interpret the 

airborne communicable disease dataset obtained from a 

Government Hospital in Ghana. The communicable diseases 

considered in this study are Tuberculosis (TB), chickenpox, 

and measles. Hence, the application of PCA will help in 

interpreting the interrelationship among the three 

communicable diseases. Furthermore, the control and 

prevention of the transmission of infectious diseases which is 

a public health priority depend on the early detection of the 

pathogens (viruses, bacteria, fungi, and protists) causing 

these diseases. In that regard, this study provides the solution 

to the urgent action that is needed to curb the rising rates of 

these communicable diseases in low- and middle-income 

countries to reduce the resulting social and economic burdens 

by producing not only timely results, but accurate statistical 

interpretations (Janati et al., 2015). 

Finally, the findings of this research will inform the 

government to make important policies including programs 

funding for the control and prevention of these communicable 

diseases.  

 

2. STATISTICAL METHOD 

2.1 Principal Components Analysis 

From the literature, it is difficult and complicated to 

determine the process causing the airborne spread of 

infectious diseases and improve the influencing factors and 

transmission routes of these diseases (Li et al., 2007). 

PCA is a statistical technique for simplifying datasets by 

using an orthogonal transformation to transform correlated 

variables into a set of uncorrelated variables called PCs. The 

PCs sequentially capture the maximum variability among the 

original variables and ensure minimum loss of information 

(Konatè et al., 2015; Muhammad et al., 2019; Ngo & 

Turbow, 2019; Luo et al., 2020). To show all the variables 

involved in the analysis, PCA was applied to the airborne 

communicable diseases considered in this study.  

Consider n objects and p variables ( n p  matrix) 

observed on the disease dataset X. The PCA stems new 

variables as a weighted linear transformation of the variables 

of X into a new set with uncorrelated desirable properties 

with each other so that their relations with another variable 

can be explored more easily. By this process, the bulk of 

information in the dataset is taken care of by progressively 

computing the PC that accounts for the combined variability 

in the dataset. 

To compute the PC, X was decomposed into vectors and 

a matrix using the singular value decomposition (SVD) 

theory (see Equation (1)). SVD is one of the most useful 

results in matrix theory as it provides a solution in exactly the 

form that is required for a biplot. This theory was employed 

to decompose X in the following manner (Orumie & and 

Ogbonna, 2019; Dash et al., 2014; Cherry, 1996):  

 
T

X UD V     (1) 

where  = U left singular vector,  = V right singular vector, 

T

nUU I  (square matrix, n dimension), and .T

pV V I

(square matrix, p dimension). T is the transpose of the matrix 

and D is a diagonal matrix with singular values .  

Consequently, Equation (2) presents the correlation of 

standardized variables of the sample dataset as follows: 

    

  Cor T X V V    (2) 

where  diag    is a diagonal matrix having 

2 2 2

1 2 ... 0p       so that   2 21n      for 

1,2,..., .p   Studies have shown that the PC score, J, is 

the projection of X onto the orthonormal basis of V  (see 

Equation (3)):   

  J XV UD     (3) 

Studies have further shown that the major aim of PCA is to 

reduce the size of multivariate matrices like X and the 

complexity of the interrelationship among the variables to a 

relatively smaller number of linear combinations of them, 

which are referred to as Principal Components (PCs) without 

much loss of information. Suppose ,k p  Equation (4) 

presents the elementwise model. 

1

k

t t t

t

x u v    


      (4) 

Here, 
tu  = matrix U  elements and 

tv  = matrix V  

elements.  = residual terms for 1,2,...,n   and 

1,2,..., .p   Hence, the explained variability is given in 

Equation (5) as follows: 

1

1

Percentage Variance = 100%

k

p















 
 
 
 
 
 




  (5) 

 

3. DATA DESCRIPTION 

In this study medical dataset that spans from January 2013 to 

December 2018 was obtained from a Government Hospital in 

Ghana, West Africa. The acquired dataset contains only the 

number of recorded cases of tuberculosis, chicken pox and 
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measles over the stipulated time frame. It is important to 

mention that the respective subjects were not considered in 

the data analysis. Table 1 shows the descriptive statistics of 

the dataset. 

 

Table 1: Descriptive Statistics of Dataset 

 

 

 

 

 

 

 

 

4. NUMERICAL APPLICATION 

In this study, the authors performed correlation analysis on 

airborne diseases to find the strength and direction of the 

linear relationship among them. Table 2 shows the correlation 

matrix of TB, chickenpox, and measles. According to Hunter 

et al. (2020), correlations are analysed by using the following 

scale: 0 corresponds to no linear relationship, 0 to 0.3 or 0 to 

-0.3 corresponds to a weak linear relationship, 0.3 to 0.7 or -

0.3 to -0.7 corresponds to a moderate relationship and 0.7 to 

1.0 or -0.7 to -1.0 corresponds to a strong linear relationship. 

From the correlation results in Table 2, it can be observed that 

the symptoms related to TB and chickenpox problems have a 

moderate negative correlation of -0.3158. This indicates that 

TB and chickenpox patients are more likely to transmit their 

diseases to each other. It can also be seen that the symptoms 

related to TB and measles had a weak negative correlation 

value of -0.1078. This means that TB and measles patients are 

less likely to transmit their diseases to each other. Similar 

results can be said about the symptoms related to chickenpox 

and measles with a weak positive correlation of 0.1536. This 

suggests that patients with these two categories of diseases 

cannot spread them among themselves (Wang et al., 2020). 

 

Table 2: Correlation Matrix of Airborne Diseases 

Disease TB Chickenpox Measles 

Tuberculosis 1   

Chicken pox -0.3158 1  

Measles -0.1078 0.1536 1 

 

The criterion utilised in this study to determine the 

number of PCs in PCA modeling is the Kaiser criterion 

(Kaiser Criterion) (Costa et al., 2014; Kanyongo, 2005). This 

criterion could retain and interpret any PCs with an 

eigenvalue greater than one. Table 3 clearly shows the share 

of overall variability explained by each PC. From Table 3, the 

first principal component (PC1), the second principal 

component (PC2), and the third principal component (PC3) 

had eigenvalues of 1.401298, 0.918489 and 0.680213, 

respectively. In this respect, only PC1 satisfied the Kaiser 

criterion. However, PC2 and PC3 with eigenvalues less than 

one were retained in this study to help in revealing the 

relationship among the communicable diseases. This is 

because the presented study is based only on the 

interpretation of the interrelationship among TB, chicken pox 

and measles. From Table 3, it is obvious that PC1, PC2 and 

PC3 could explain 46.70994%, 30.61631% and 22.67376% 

of the airborne disease dataset. The cumulative sum of the 

useful information derived from the disease dataset is 100%. 

This means that all the useful information about the disease 

dataset was used for the interpretation of the relationship 

among the diseases without any information being lost. 

 

Table 3:  PCA results on the medical dataset  

Figure 1 is a scree plot employed in the study to further show 

the PCs' ability to explain the variation in the communicable 

disease dataset. The figure clearly shows each PC's share of 

the total variation. The PC loadings (Table 4) show the nature 

of the correlation between the PCs and communicable 

diseases (TB, chickenpox, and measles). The interpretation of 

the PCs is based on finding which communicable diseases are 

most strongly correlated with each PC. Here a correlation 

above 0.3 is deemed important. 

 

  Statistics   

Disease Mean Standard Deviation Minimum Value Maximum Value 

     

Tuberculosis 18.6667 8.6056 0 37 

Chicken pox 31.6667 14.6883 5 63 

Measles 3.25 2.8864 0 13 

Principal Component (PC)   Eigenvalue 
 

% of Total Variance  
 

Cumulative % 
 

1 
 

1.401298 46.70994 46.7099 

2 
 

0.918489 30.61631 77.3262 

3 
 

0.680213 22.67376 100.0000 
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Figure 1: Scree Plot of the three PCs 

 

Figures 2 to 4 show the projection of the diseases on the 

PC plane to confirm further the correlation among the 

communicable diseases. This visualisation helps to show the 

most correlated diseases to each component. From these 

figures, diseases pointing in the same direction in a quadrant 

on the PC plane suggest that they correlate positively and 

vary together. This means an increase in the transmission rate 

of one of the diseases tends to increase the transmission rate 

of the corresponding disease and vice versa. On the other 

hand, diseases pointing in the opposite sense on the PC plane 

correlate negatively. This also suggests that an increase in the 

transmission rate of a disease will cause the transmission rate 

of the corresponding disease to decrease and vice versa. 

Figure 2 is an example of such negatively correlated diseases 

for TB and chickenpox. Similar results can be said about 

Figures 3 and 4 for TB and measles, and chickenpox and 

measles, respectively.  

However, diseases presented on the PC plane in an 

orthogonal way are uncorrelated. The uncorrelated diseases 

can be seen in Figure 2 for TB and measles as well as measles 

and chickenpox. Similar uncorrelation was observed for TB 

and chickenpox as well as chickenpox and measles in Figure 

3. In Figure 4, TB and chickenpox as well as TB and measles 

showed uncorrelation. Thie interpretation for this 

uncorrelation is that an increase or decrease in the 

transmission rate of one of the diseases has no influence on 

the behaviour of the other disease. 

 

TB

CHICKEN POX

MEASLES

-1.0 -0.5 0.0 0.5 1.0

PC 1 : 46.71%

-1.0

-0.5

0.0

0.5

1.0

P
C

 2
 : 

30
.6

2%

 
Figure 2: Projection of the disease variables on the PC1 versus PC2 
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Figure 3: Projection of the disease variables on the PC1 versus PC3 
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Figure 4: Projection of the disease variables on the PC2 versus PC3 

 

The PCs can be interpreted using PC loadings to understand 

the significance of each communicable diseases to PC1, PC2 

and PC3. From Table 4, PC1 is strongly correlated with TB, 

and chicken pox, while measles moderately correlates to PC1. 

Thus, the correlation in PC1 increased with increasing 

chickenpox and measles but decreased with TB. This 

suggests that these three diseases do not vary together. Since 

chickenpox and measles vary together, an increase in the 

transmission rate of any one of them will cause the 

transmission rate of the corresponding disease to increase and 

vice versa. However, the transmission rate of TB will 

decrease in this instance and vice versa. Similar results can 

be said about PC2 that it is strongly correlated with measles 

and TB. This means that if the transmission rate of measles is 

increased, then that of TB will also increase, and vice versa. 

However, the transmission rate of chickenpox will decrease 

and vice versa. It can also be seen that PC3 is strongly 

correlated with chickenpox and TB. Thus, an increase in the 

transmission rate of chickenpox will cause an increase in the 

transmission rate of TB, but there will be a decrease in the 

transmission rate of measles and vice versa. 
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Table 4: Principal Component Loadings 

 

 

 

 

 

4. CONCLUSION 

The main contribution of this study is to explore the 

capability of PCA as a multivariate statistical technique to 

interpret the relationship between TB, chickenpox, and 

measles. First, the Pearson correlation analysis revealed the 

existence of moderate and weak relationships between the 

diseases. For the PCA results, it was revealed that PC1, PC2 

and PC3 could explain the original data by 46.70994%, 

30.61631%, and 22.67376% with no loss of information. The 

dynamics in the disease transmission were revealed from the 

projection of the diseases onto the PC plane. Here, TB and 

chicken pox, TB and measles, and chickenpox and measles 

were found to have a negative correlation suggesting that an 

increase in the transmission rate of a disease will cause the 

transmission rate of the corresponding disease to decrease 

and vice versa. Orthogonal relationships were also observed 

on the PC plane where TB and measles, measles and 

chickenpox, and TB and chickenpox showed uncorrelation. 

This uncorrelation implied that an increase or decrease in the 

transmission rate of one of the diseases does not influence the 

behaviour of the other diseases. Because only three airborne 

diseases were considered, the results presented in this study 

can only be considered as preliminary work where it is 

demonstrated that PCA could be a useful technique to 

understand and interpret the relationships among diseases and 

their transmission. One limitation of this study is the number 

of airborne diseases considered. Therefore, for future work, it 

is recommended that more airborne diseases should be 

considered for in-depth interpretation of their 

interrelationships. 
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