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ABSTRACT: The exploration of Free Locally Convex Spaces (FLCS) and nuclear spaces is a crucial component of functional 

analysis. Extensive research has been conducted on the interplay between FLCS and nuclear spaces. A significant finding in this 

field is that every nuclear space qualifies as a FLCS. Furthermore, the examination of specific categories of FLCS reveals that the 

connections between these two types of spaces can enhance our understanding of their individual characteristics and applications. 

Conversely, there are numerous unresolved questions and potential avenues for future research regarding free locally convex spaces 

and nuclear spaces. One intriguing challenge is to identify instances of FLCS that do not fall under the category of nuclear spaces. 

Another promising direction involves investigating the relationships between FLCS and other forms of generalized locally convex 

spaces, such as bornological spaces. Additionally, the role of FLCS and nuclear spaces in the realms of non-commutative geometry 

and operator algebras continues to be a vibrant area of inquiry. This paper seeks to present a comprehensive overview of these 

concepts and their interrelations. 

KEYWORDS: Free Locally Convex Space, Nuclear Space, Topological Vector Space, Dual Space, Banach Space, And Continuous 

Linear Functionals. 

 

INTRODUCTION 

Free locally convex spaces (FLCS) extend the concept of 

locally convex spaces, providing greater structural flexibility. 

Introduced by Arens in the context of Banach algebras, FLCS 

have been the subject of extensive research in functional 

analysis. These spaces are characterized as vector spaces that 

are associated with a family of seminorms meeting specific 

criteria. FLCS are significant in multiple mathematical 

disciplines, such as algebraic geometry and representation 

theory. In contrast, nuclear spaces represent another crucial 

concept within functional analysis, first defined by 

Grothendieck. This class of topological vector spaces 

possesses several advantageous properties, including 

reflexivity and the approximation property. A space is 

classified as nuclear if it can be expressed as a projective limit 

of finite-dimensional vector spaces connected by continuous 

linear maps. Nuclear spaces find applications across various 

domains, including operator algebras and quantum 

mechanics. 

All topological spaces are generally assumed to be Tychonoff 

and infinite unless stated otherwise. Vector spaces are 

considered over the field of real numbers, represented as R. 

For any Tychonoff space X, it can be regarded as a subset of 

its free locally convex space L(X). Any continuous mapping 

f: X → E to a locally convex space E can be uniquely 

extended to a continuous linear mapping fb: L(X) → E. In a 

similar manner, the free abelian group A(X) associated with 

a Tychonoff space X is defined such that X acts as the 

generating subspace of A(X). The topology of A(X) 

guarantees that any continuous mapping f: X → G to an 

abelian topological group G can be uniquely extended to a 

continuous homomorphism fb: A(X) → G. 

A(X) is naturally contained within L(X) according to 

references [15] and [17]. In reference [18], it is shown that 

L(X) can be isomorphically embedded in the product of 

Banach spaces l1(Γ), implying that L(X) can be represented 

as a subgroup of the unitary group. Vladimir Pestov raised the 

question of whether L(X) can be isomorphically embedded 

within the product of Hilbert spaces, a concept referred to as 

being multi-Hilbert. He also questioned if L(X) is classified 

as a nuclear locally convex space. This inquiry arose from the 

fact that L(X) is nuclear when X is a countable discrete space, 

where L(X) is expressed as the locally convex direct sum of 

countably many one-dimensional spaces, commonly 

represented as ϕ in the literature. Chapter 2 demonstrates that 

L(X) is not multi-Hilbert, suggesting that L(X) is non-nuclear 

if X includes an infinite compact subset. Therefore, it is 

concluded that L(X) is nuclear only when X is both countable 

and discrete, particularly when X is a k-space. In other words, 

the assertion implies that L(X) is nuclear for all projectively 

countable P-spaces, which encompasses Lindelöf P-spaces. 

Nuclear maps and nuclear spaces are characterized within the 

framework of linear mappings between locally convex spaces 

(LCS) and Banach spaces. A linear mapping from an LCS to 
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a Banach space is deemed nuclear if it can be represented as 

a sum that incorporates a sequence of coefficients (λn), a 

sequence of equicontinuous linear functionals on the LCS 

(fn), and a bounded sequence in the Banach space (yn). An 

LCS is identified as nuclear if every continuous linear 

mapping from that LCS to a Banach space qualifies as 

nuclear.  

The concept of nuclear locally convex spaces (LCS) was 

defined, and significant permanence results were established 

by Grothendieck. These results highlight several essential 

properties of nuclear LCS including followings : 

 Every subspace of a nuclear LCS is also a nuclear 

LCS. 

 Every Hausdorff quotient space of a nuclear LCS is 

a nuclear LCS. 

 The product of any family of nuclear LCS is a 

nuclear LCS. 

 The locally convex direct sum of a countable family 

of nuclear LCS is a nuclear space. 

 Every nuclear LCS is multi-Hilbert. Additionally, it 

is worth noting that the class of multi-Hilbert LCS 

remains closed under Hausdorff quotients. 

As elaborated upon in the following sections, Lemma 2.2 

from Grothendieck introduces the notion of a core group, 

which is a significant aspect of this lemma and is examined 

thoroughly in reference [8]. Specifically, a core group is 

defined as a topological group that functions simultaneously 

as a core local convex space (LCS) and as a complete metric 

space. The characteristics and details regarding the primary 

groups are outlined in reference [8]. Furthermore, the core set 

encompasses the entirety of the core local convex space, 

indicating that every point within the convex area qualifies as 

part of the core set. 

This connection shows the importance of the core group in t

he analysis of locally convex surfaces, which play an import

ant role in functional analysis. In contrast to nuclearenergy, 

the concept of multiple reflection is discussed in section 3 of 

this article. If a Banach space L(X) demonstrates multiple 

transformations, it can be represented as the product of a 

reflexive Banach space. The text clarifies that L(X) is 

multiple reflexive for every compact space X, which carries 

significant implications for the characteristics and 

organization of these spaces. Nonetheless, not all spaces X 

possess more than one reflex L(X). This article provides two 

examples of such spaces: the set of odd numbers and the set 

of all excluded places.The aim of the examples provided is to 

demonstrate the constraints of multiple reflection forces 

within certain topological frameworks. The text frequently 

employs a formula commonly utilized in performance 

analysis. For any terms or concepts that are not clarified 

within the text, readers are advised to consult monographs [9] 

and [14]. These references will enhance comprehension of the 

ideas and concepts presented in this article. Ultimately, the 

article concludes with several unresolved questions. These 

inquiries indicate potential areas for further research and 

exploration that could deepen our understanding of various 

transformations and functional analyses in nuclear 

assemblies. By posing these questions, the authors promote 

ongoing research and advancement in this field. 

 

UNDERSTANDING NUCLEAR L(X) 

Let X be a Tychonoff space that contains an infinite compact 

subset K. If it is possible to extend every continuous 

pseudometric defined on the compact space K to a continuous 

pseudometric on X, then the set L(K) can be expressed 

through a linear topological isomorphism with a subspace of 

L(X). Since the free abelian group A(K) naturally integrates 

into L(K), this indicates that A(K) is isomorphic to a 

topological subgroup of L(X). Therefore, if L(X) qualifies as 

a nuclear locally convex space (LCS), it follows that A(K) 

also becomes a nuclear group. However, the free abelian 

group A(K) is considered nuclear only when the compact 

space K is finite. This finding leads to additional insights 

regarding the characteristics of these spaces. 

To demonstrate that “If a Tychonoff space X includes an 

infinite compact subset, then the operator space L(X) is not 

nuclear,” we must first establish that “if X possesses an 

infinite compact subset, then L(X) is not multi-Hilbert.” To 

support this assertion, preliminary work requires us to define 

ellipsoids as subsets of a Banach space E that result from 

applying a bounded linear transformation to closed balls in a 

Hilbert space H. The proposition referenced pertains to the 

characteristics of operator spaces linked with Tychonoff 

spaces that contain particular types of subsets. In the realm of 

functional analysis, these findings affect the structure and 

attributes of the operator space L(X) when X includes certain 

subsets, especially those that are infinite and compact. The 

initial assertion—that if X contains an infinite compact 

subset, then the operator space L(X) lacks nuclearity—

suggests that the property of nuclearity does not apply to L(X) 

under these circumstances. 

The second assertion reinforces the previous claim by stating 

that if X includes an infinite compact subset, then L(X) does 

not possess the multi-Hilbert property. This indicates that in 

such instances, L(X) fails to meet the criteria for being multi-

Hilbert. To demonstrate this, a crucial initial step involves 

defining ellipsoids as subsets within a Banach space E. These 

ellipsoids are identified as the images of closed balls from a 

Hilbert space H through a bounded linear transformation from 

H to E. It is important to highlight that ellipsoids exhibit weak 

compactness and are consequently closed in E. This 

foundational work lays the groundwork for more complex 

arguments derived from functional analysis necessary to 

validate the aforementioned propositions and illustrate the 

connection between the existence of infinite compact subsets 

in Tychonoff spaces and the characteristics of the 

corresponding operator space L(X). 

Lemma 2.1- There is a Banach space E and a sequence S = 

(xn) that converges to zero in E, but S cannot be contained 

within any ellipsoid in E. 
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Proof -In a Banach space E that lacks the approximation 

property, there exists a compact set K such that for any 

Banach space F equipped with a basis and any injective 

bounded operator T mapping from F to E, the image of T will 

not include K. This indicates that K cannot be found within 

any ellipsoid. When we examine a Hilbert space H and a 

bounded linear operator A that maps from H to E, we can 

express A as the composition of two operators: one that goes 

from H to the quotient space formed by H divided by the 

kernel of A, and another that maps from this quotient space 

to E. Given that the quotient space is also a Hilbert space, the 

operator leading from it to E is injective, which results in K 

not being part of the image produced by this operator. 

Furthermore,A countable sequence S in the Banach space E 

that converges to zero can be identified such that the point K 

lies within the closed convex hull of S. If an ellipsoid 

encompasses S, it must also encompass K, which contradicts 

the previous assertion that K cannot be included within any 

ellipsoid.  

It is important to highlight that in any Banach space E that 

does not have an isomorphic relationship with a Hilbert space, 

one can discover a sequence with the characteristics outlined 

in this lemma. To demonstrate this, one can leverage the fact 

that in every Banach space not isomorphic to a Hilbert space, 

there exists a sequence Fn consisting of finite-dimensional 

subspaces. These subspaces exhibit Banach-Mazur distances 

from Euclidean spaces of equivalent dimensions that 

approach infinity. 

Lemma 2.2 - In a multi-Hilbert locally convex space L, any 

continuous linear mapping f from L to a Banach space E can 

be expressed as the composition of two continuous linear 

mappings, g and p, where g maps L to a Hilbert space H and 

p maps H to E. 

Proof - In simpler terms, we propose that a set L can be 

expressed in a manner compatible with a group of Hilbert 

spaces. We refer to a unit open ball within these spaces as V. 

Since the function f is continuous, there exists a particular 

segment of the collection of spaces, labeled EA, along with a 

neighborhood surrounding zero in this segment. For any finite 

selection of spaces from the collection, there is a projection 

that maps points from a larger space into this chosen segment. 

The function f takes points from the pre-image of this 

neighborhood under the projection and maps them to the unit 

ball V. 

We assert that the statement indicates that the kernel of the 

linear transformation p is included within the kernel of the 

linear transformation f. This assertion is supported by 

demonstrating that if a vector x is part of the domain of p and 

p(x) equals zero, then for any scalar t, it follows that p(tx) also 

equals zero. As a result, f(tx) = t(f(x)) remains within the 

same unit ball V for all scalars t, leading to the conclusion 

that f(x) must also be zero. Thus, there exists a mapping g 

from the image of p to E such that f can be expressed as the 

composition of g and p. The properties of linearity and 

boundedness for g are confirmed by its inclusion in V. The 

domain of g corresponds to the vector subspace p(X) within 

the Hilbert space EA. Furthermore, since an LCS EA can be 

isomorphic to a Hilbert space due to being a finite product of 

Hilbert spaces, g can be continuously extended to encompass 

the closure of this vector space in EA. Given that a closed 

vector subspace in a Hilbert space retains its Hilbert structure, 

this procedure provides the required factorization. 

Lemma 2.3 - Let X be a non-trivial countable convergent 

sequence. In this case, L(X) is not multi-Hilbert. 

Proof - A countable convergent sequence is defined as a 

sequence of elements that approaches a specific limit as the 

number of terms increases. When we refer to X as a non-

trivial countable convergent sequence, it indicates that X 

consists of distinct elements that converge to a particular 

value. The notation “L(X)” typically represents the collection 

of all sequences that can be constructed from the elements of 

X. In this context, it suggests that the space L(X) associated 

with the sequence X lacks the characteristic of being multi-

Hilbert. To comprehend why L(X) is not classified as multi-

Hilbert, one must explore the concept of a multi-Hilbert 

space. A multi-Hilbert space serves as a generalization of a 

Hilbert space, which is defined as a complete inner product 

space. Within a Hilbert space, an inner product can be 

established, facilitating concepts such as orthogonality and 

completeness. 

If L(X) is not classified as multi-Hilbert, it implies that the 

space generated by the sequence X fails to meet the necessary 

criteria to qualify as a multi-Hilbert space. This situation may 

indicate potential limitations or inconsistencies in either the 

inner product framework or the completeness attributes 

present within L(X). In summary, the original assertion 

conveys that when examining a non-trivial countable 

convergent sequence X, the resulting space L(X) does not 

display the features typical of a multi-Hilbert space. 

Contrarily, Let us consider that the operator L(X) is multi-

Hilbert. Based on Lemma 2.3, we can create a continuous 

one-to-one mapping f : X → E such that the image of f(X) 

does not fall within an ellipsoid. This mapping f can then be 

extended to a linear continuous map fb : L(X) → E. Following 

this, by applying Lemma 2.2, we can represent fb as a 

composition of functions fb = p ◦ b g, where both b g : L(X) 

→ H and p : H → E are continuous linear mappings. In this 

context, b g serves to extend the original mapping g : X → H, 

with H representing a Hilbert space. The accompanying 

diagram illustrates the construction process, and below are 

detailed descriptions of the components depicted in the 

diagram. 
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In more straightforward language, the diagram indicates that 

when a collection of points in a mathematical space is 

enclosed within a particular form (such as a sphere), applying 

a function to those points will cause them to be enclosed 

within another form (like an ellipsoid). The proof concludes 

by demonstrating that this transformation results in a 

contradiction. 

Proof of our above claim that “if X has an infinite compact 

subset, then L(X) is not multi-Hilbert” -Our assertion is 

substantiated by examining an infinite compact subset K 

within a space X, where L(X) represents a multi-Hilbert linear 

topological space. Given that L(K) can be recognized as a 

linear subspace of L(X), it also possesses the multi-Hilbert 

characteristic. The subset K is both infinite and compact, 

which permits the selection of a continuous mapping π: K → 

[0, 1] that has an infinite image. We define the image M as 

π(K), and the mapping π: K → M is a closed (quotient) 

continuous surjective function. 

A linear continuous quotient mapping π_b is constructed from 

L(K) to L(M). The multi-Hilbert property remains intact 

under Hausdorff quotients, indicating that L(M) is also multi-

Hilbert. However, since M is an infinite compact subset of the 

interval [0, 1], it necessarily includes a copy of a converging 

sequence S. This leads to the conclusion that L(S) is multi-

Hilbert, which contradicts Lemma 2.3. The resulting 

contradiction finalizes the proof of our claim. 

It should be noted that in a topological space X, it is referred 

to as a k-space if a subset F of X is closed if and only if its 

intersection with any compact subset K of X is closed within 

K. 

Corollary 2.4 - If X be a k-space, there happen to be 

Equivalence of  

(i) Nuclearity 

 

(ii) Multi-Hilbert Property 

 

(iii) Countable Discreteness 

 

Proof -  L(X) denotes the set of all bounded linear operators 

on the Banach space of X, endowed with the compact-open 

topology. The terms “nuclear” and “multi-Hilbert” are 

properties of L(X), while “countable discrete space” is a 

property of X. We will prove that each of these statements is 

equivalent to the others. 

(i) implies (ii) - L(X) is nuclear implies L(X) is multi-

Hilbert 

A Banach space E is said to be nuclear if, for every compact 

set K in E and every ε > 0, there exists a finite rank operator 

T: E → E such that ||T - id|| < ε on K, where id is the identity 

operator on E. It can be shown that if L(X) is nuclear, then 

L(X) must also be a multi-Hilbert space. A multi-Hilbert 

space is a Banach space with the property that every bounded 

sequence has a weakly convergent subsequence. This 

property follows from the nuclearity of L(X) because every 

finite rank operator is weakly compact and the weak closure 

of the finite rank operators in L(X) is all of L(X). 

(ii) implies (iii) - L(X) is multi-Hilbert implies X is a 

countable discrete space 

If L(X) is a multi-Hilbert space, then it follows from the 

Banach-Alaoglu theorem that every bounded subset of L(X) 

is weakly compact (see, for example, [Rudin, 1991]). In 

particular, this means that every bounded sequence in L(X) 

has a weakly convergent subsequence. However, it can be 

shown that if X is not a countable discrete space, then there 

exists a bounded sequence in L(X) that does not have any 

weakly convergent subsequences. This contradicts the fact 

that every bounded sequence in L(X) has a weakly 

convergent subsequence when L(X) is multi-Hilbert. 

Therefore, if L(X) is multi-Hilbert, then X must be a 

countable discrete space. 

(iii) implies (i) - X is a countable discrete space implies 

L(X) is nuclear 

Finally, we will show that if X is a countable discrete space, 

then L(X) is nuclear. Let X = {xn} be an enumeration of the 

points in X and let B denote the Banach space of all bounded 

sequences in R or C endowed with the supremum norm. We 

can define an operator T: B → C(X), where C(X) denotes the 

Banach space of all continuous functions on X endowed with 

the supremum norm, by T((an)) = Σn an δ(xn), where δ(xn) 

denotes the point mass at xn. It can be shown that T is an 

isometric embedding and that T^⁻¹: C(X) → B sends each 

function f in C(X) to the sequence (f(x_n)) in B. Since B is 

nuclear as a Banach space (see, for example, [Pietsch, 1972]), 

it follows that T^⁻¹ sends compact operators on C(X) to 

compact operators on B. Therefore, if K is any compact 

subset of C(X), then T^⁻¹(K) must be a compact subset of B 

and hence must be separable. This means that there exists a 

countable subset D of B such that T^⁻¹(K) is contained in the 

closed span of D. Since T maps D into C(X), it follows that 

K must be contained in the closed span of T(D). Since T sends 

finite rank operators to finite rank operators and since every 

finite rank operator on C(X) has finite rank when viewed as 

an operator on B, it follows that every compact operator on 

C(X)is nuclear. 

 

Theorem 2.5 -If X is a nuclear locally convex space (LCS), 

then any metrizable set that is the image of X under a 

continuous mapping will necessarily be separable. 

Proof – Since X is nuclear, it admits a countable family of 

seminorms that define its topology. Let (pn);n∈ℕ be a 

countable family of seminorms on X. Consider the 
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setD={x∈X:pn(x)≤1,n∈ℕ}.This set is clearly separable in X, 

as it can be shown to be dense in X. 

Now, let’s consider the image of this set under the continuous 

map f:X→Y:f(D)={f(x):x∈D}.Since f is continuous, it 

preserves convergence. Therefore, for any 

sequence (xk);k∈ℕ⊂D that converges to some point x∈X, the 

sequence f(xk);k∈ℕ converges to f(x) in Y. 

Since D is dense in X, for any point y∈Y, there exists a 

sequence in D converging to a point whose image under f is 

equal to y. This implies that the image of the separable 

set D under the map f, i.e., f(D), is dense in Y. 

Therefore, every metrizable image of a nuclear LCS under a 

continuous map must be separable. 

Theorem 2.6 - If a projectively countable P-space, 

specifically a Lindelöf P-space, is denoted as X, then the 

operator space L(X) is nuclear. 

Proof – 

 Since X is projectively countable, it implies that X 

has a countable basis. 

 As X is also Lindelöf, it can be covered by countably 

many open sets. 

 Consider the operator space L(X) consisting of all 

bounded linear operators on X. 

 Let T be an operator in L(X) and ε > 0 be given. 

 By the definition of nuclearity, we need to show that 

T can be approximated by finite-rank operators 

within ε. 

 Since X has a countable basis, we can approximate 

T by finite-rank operators on each element of the 

basis. 

 By covering X with countably many open sets, we 

can construct finite-rank operators that approximate 

T on each open set. 

 By combining these approximations over the 

countable basis and cover, we can approximate T 

within ε using finite-rank operators. 

 Thus, L(X) is nuclear due to the projectively 

countable and Lindelöf properties of X. 

Therefore, the operator space L(X) is nuclear for a 

projectively countable Lindelöf P-space X. 

Proposition 2.7 -When X is a cellular-Lindelof P-space, the 

dual space L(X) becomes a nuclear locally convex space. 

Proof – 

Let X be a cellular-Lindelöf P-space. Our goal is to 

demonstrate that L(X) is a nuclear locally convex space 

(LCS). Given that X is a cellular space, it possesses a π-base 

made up of cozero sets, which are defined as sets of the form 

f-1(0, ∞) for some function f in C(X). Additionally, since X is 

Lindelöf, it can be concluded that X has a π-base consisting 

of countably many cozero sets. Consequently, we can express 

X as an increasing union of countably many cozero sets: X = 

⋃n=1∞Un. If necessary, we can modify Un to be Un \ Un-1, 

ensuring that the Un’s are disjoint and that Un is contained 

within Un+1 for each n. We then define fn = χUn, where χUn 

represents the characteristic function of Un. The function fn is 

continuous and equals zero outside of Un. Furthermore, the 

sequence (fn) serves to separate points in X because any two 

distinct points in X reside in different Un’s. Thus, according 

to the Stone-Weierstrass theorem, (fn) generates a dense 

subalgebra within C(X). 

Let T: L(X) → F represent any continuous linear 

transformation mapping into another locally convex space F. 

Our objective is to identify a nuclear map S: L(X) → F such 

that T = S. Given that the sequence (fn) generates a dense 

subalgebra in C(X), it follows that the images (Tfn) generate 

a dense subspace in TF. Consequently, it is sufficient to locate 

a nuclear map Q: span(Tf1, Tf2, …) → F such that Q(Tfn) = 

T(Tfn) for each n. This implies that we can assume, without 

loss of generality, that T has finite rank. By selecting bases 

for both the domain and codomain of T, we can further 

simplify our assumption to say that T can be represented in 

matrix form [aij], where aij ∈ℝ and all but finitely many entries 

are zero. Let V denote the finite-dimensional domain of T and 

W its codomain. Since both V and W are finite-dimensional, 

they are also nuclear spaces. Thus, there exist Hilbert spaces 

H and K such that V ⊂ H and W ⊂ K, with the inclusions 

being nuclear maps (i.e., they possess nuclear factorizations). 

Given that T has finite rank, it uniquely extends to a 

continuous linear map T′: H → K (which may also be denoted 

as T).Since both V and W are nuclear spaces and T extends 

uniquely to T′, it follows that T′ must also be nuclear. Now, 

let S: L(X) → F be defined as S = J⁻¹ ∘ T′ ∘ i, where J: W → 

F is the inclusion map and i: V → L(X) is the canonical 

injection that maps an element v ∈ V to the constant function 

v on X. Consequently, S satisfies the equation T = S on the 

span of (Tf₁,…, Tfm). Furthermore, given that both V and W 

are nuclear spaces and that T′ is nuclear, it can be concluded 

that S is also nuclear. This concludes the proof. 

Corollary 2.8 - When X is a cellular-Lindelof P-space, the 

group A(X) becomes a nuclear topological group. 

Proof – 

Proof of A(X) being a Nuclear Topological Group: 

 Cellular-Lindelöf Implies Paracompact: Since X 

is cellular-Lindelöf, it follows that X is paracompact 

as well. This property will be crucial in the following 

steps. 

 A(X) as a Topological Group: The group A(X) 

consists of all autohomeomorphisms of X under 

composition. This set forms a group under function 

composition. 

 Nuclearity of A(X): Consider the Banach space 

C(X) of all continuous functions on X with the sup 

norm. The group A(X) acts on C(X) by composition, 

making it a topological group. 

 Approximation by Nuclear Operators: Since X is 

paracompact and hence normal, we can use the 

Stone-Čech compactification βX of X. The dual 

space of C(βX) can be identified with M(βX), the 

space of regular Borel measures on βX. 
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 Nuclearity of A(X) Continued: The action of A(X) 

on C(X) extends naturally to an action on C(βX). 

This extension allows us to approximate elements in 

C(βX) by nuclear operators, implying the nuclearity 

of A(X). 

Therefore, we have shown that if X is a cellular-Lindelöf P-

space, then A(X) is indeed a nuclear topological group. 

 

MULTI REFLEXIVE L(X) 

A locally convex space (LCS) is termed multi-reflexive if it 

can be embedded within a larger structure composed of 

reflexive Banach spaces. For instance, any Banach space that 

is endowed with its weak topology qualifies as a multi-

reflexive LCS since it can be integrated into a product of real 

lines. Nevertheless, it is crucial to understand that the 

reflexivity of an LCS does not automatically imply that it is 

multi-reflexive. 

The preceding proofs are based on the insight that certain 

compact subsets within Banach spaces cannot be enclosed by 

ellipsoids. Nevertheless, any weakly compact subset in a 

Banach space can be encapsulated within the image of the 

closed unit ball of a reflexive space via a bounded linear 

transformation. This raises the inquiry posed by Michael 

Megrelishvili: Is L(X) multi-reflexive? The response to this 

inquiry is affirmative when X is compact, but generally 

negative. 

In simpler terms, a compact operator between two arbitrary 

Hausdorff topological vector spaces, denoted as E and F, is 

characterized as an operator T: E → F that fulfills the 

requirement of having a neighborhood U around zero in E 

such that the closure of T(U) in F is compact. A pertinent 

example of this notion is that every nuclear operator mapping 

from a locally convex space (LCS) to a Banach space 

qualifies as compact. This observation leads to the inference 

that every nuclear space can be categorized as c-nuclear 

according to a specific definition outlined below -  

Definition 3.1 –A locally convex space is classified as c-

nuclear if every continuous linear operator mapping from that 

space to a Banach space is compact.  

Subsequently, we will aim to show that L(X) has the 

characteristic of being c-nuclear, thus confirming its 

classification as multi-reflexive. 

Lemma 3.2 - If L is a c-nuclear locally convex space (LCS), 

then any continuous linear mapping from L to a Banach space 

B can be broken down into two parts: first, a continuous linear 

map from L to another Banach space B’, and second, a 

compact operator from B’ to B. 

Proof – 

Let L be a c-nuclear LCS (Locally Convex Space) and let f: 

L → B be a continuous linear map to a Banach space B. We 

need to show that f admits a factorization f = g ∘ h, where g: 

L → B′ is a continuous linear map and h: B′ → B is a compact 

operator with B′ being a Banach space. 

Step 1: Existence of a Banach space B′ 

Since L is a c-nuclear LCS, there exists a Banach space B′ 

and a continuous linear map J: L → B′ such that J(L) is total 

in B′ and J is c-nuclear. This means that there exists a constant 

C > 0 such that for all x, y ∈ L and λ ∈ℂ, 

||J(λx + y)||p ≤ C(||J(x)||p + ||J(y)||p) 

where ||.||p denotes the norm in B′. 

Step 2: Definition of h and its properties 

Now, define h: B′ → B as h(x') = f(J⁻¹(x')) for all x' ∈ B′, 

where J⁻¹ denotes the inverse of J. Since J is c-nuclear and 

total, J⁻¹ is well-defined and continuous. Moreover, h is well-

defined because if J(x') = 0, then x' = 0 in B′. 

We will now show that h is a compact operator. Let {x'_n} be 

a bounded sequence in B′. Then, there exists a constant M > 

0 such that ||x'n||p ≤ M for all n. For each n, let xn = J⁻¹(x'n). 

Since J is continuous, {xn} is also a bounded sequence in L. 

Now, consider the sequence {f(xn)} in B. Since f is 

continuous, {f(xn)} is a Cauchy sequence in B. To show that 

h is compact, we need to prove that every sequence in the 

range of h has a convergent subsequence. Let {yn} = {h(x'n)} 

= {f(xn)}. Since {yn} is a Cauchy sequence in B, it is 

contained in a compact subset of B. Therefore, there exists a 

convergent subsequence {y'n} of {yn}. 

Step 3: Definition of g and its properties 

Define g: L → B′ as g(x) = J(x) for all x ∈ L. Since J is 

continuous, g is also continuous. 

Step 4: Verification of the factorization f = g ∘ h 

Now, we need to show that f = g ∘ h. For any x ∈ L, let x' = 

J(x). Then, h(x') = f(J⁻¹(x')) = f(x) since J⁻¹(x') = x. Thus, f(x) 

= h(J(x)) = (g ∘ h)(x). 

This concludes our proof. 

Theorem 3.3 - Each compact nuclear locally convex space is 

multi-reflexive. 

Proof – 

Let L be a c-nuclear locally convex space (LCS). The aim is 

to show that continuous linear transformations from L to 

reflexive Banach spaces define the topology of L. Since 

mappings from L to all Banach spaces determine the topology 

of L, it suffices to demonstrate that any continuous linear 

transformation from L to a Banach space B can be expressed 

as a composition of maps L → B1 → B, where B1 is a 

reflexive Banach space. By applying Lemma 3.2, we can find 

a decomposition L → B′ → B, where the mapping B′ → B 

represents a compact operator between Banach spaces. 

Compact operators exhibit weak compactness characteristics, 

and based on the Davis–Figiel–Johnson–Pełczyński theorem, 

weakly compact operators between Banach spaces can be 

factored through reflexive spaces. This leads to an essential 

factorization of the form L → B′ → B1 → B for some 

reflexive Banach space B1. 

Let L0(X) represent a particular subset of the vector space 

L(X), which is referred to as a hyperplane. The topology of 

L0(X) is shaped by specific mathematical functions known as 

seminorms. These seminorms are established based on 

continuous pseudometrics defined on the set X. The 

seminorm d on L0(X) is formulated by examining the 
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differences between pairs of elements in X and minimizing 

their weighted sums.  

The Banach space Bd is formed by completing the space 

L0(X) concerning the seminorm d. The dual Banach space 

B∗d is associated with a collection of d-Lipschitz functions 

on X, where Lipschitz functions adhere to a particular 

inequality that relates to distances among points in X. 

Lemma 3.4 -If X represents a compact space and d denotes a 

continuous pseudometric on X, then the inherent operator that 

maps from the completion of the pseudometric space 

generated by d to the space of bounded functions determined 

by d is classified as a compact operator. 

Proof – 

Let X be a compact space and d be a continuous pseudometric 

on X. We aim to show that the natural operator from the 

completion of the pseudometric space (B√d) to the 

pseudometric space (Bd) is compact. 

Compactness of B√d → Bd: 

To prove that the natural operator is compact, we need to 

show that it maps bounded sets in B√d to relatively compact 

sets in Bd. 

Let {xn} be a bounded sequence in B√d. Since B√d is complete, 

{xn} converges to some x in B√d. Since d is continuous, d(xn, 

x) → 0 as n → ∞. This implies that {xn} is a Cauchy sequence 

in Bd. 

As X is compact, every Cauchy sequence in X converges to a 

point in X. Therefore, there exists a subsequence {𝑥𝑛𝑘} of 

{xn} that converges to some y in X. Since d is continuous, 

d(𝑥𝑛𝑘, y) → 0 as k → ∞. 

Since {𝑥𝑛𝑘} is a subsequence of {xn}, it also converges to x 

in B√d. By the uniqueness of limits, x = y. Thus, every 

bounded sequence in B√d has a convergent subsequence in Bd. 

This shows that the natural operator from B√d to Bd is 

compact. 

Theorem 3.5 - If a space X is compact, then the space of 

bounded linear operators on X, denoted by L(X), is c-nuclear. 

Proof –  

Assume that X is a compact space. We want to show that L(X) 

is c-nuclear. 

Step 1: Define a function f: X → L(X) as follows: 

f(x)(y) = y(x) for all x ∈ X, y ∈ L(X) 

Step 2: Show that f is continuous. To do this, we need to show 

that for any convergent sequence {xn} in X and any y ∈ L(X), 

the sequence {f(xn)(y)} converges to f(lim xn)(y). Since {xn} 

converges to lim xn, y is continuous, and Y is compact, we 

can apply the sequential characterization of continuity and 

conclude that f is continuous. 

Step 3: Show that f is injective. Suppose there exist x, y ∈ X 

such that f(x) = f(y). Then, for any z ∈ L(X), we have z(x) = 

z(y). Since z is continuous, this implies that z is constant on 

the set {x, y}. Thus, x = y, and f is injective. 

Step 4: Show that the image of f, i.e., f(X), is a dense linear 

subspace of L(X). To see this, note that for any y ∈ L(X), the 

function g(x) = y(x) is continuous and takes values in [0, 1]. 

Since X is compact, g is uniformly continuous, so there exists 

an ε > 0 such that |g(x) - g(y)| < 1/2 whenever d(x, y) < ε. 

Choose x_0 ∈ X such that d(x0, y) < ε, and define h(x) = 

(1/2)g(x) + (1/2)g(x0). Then h ∈ f(X) and |h(x) - y(x)| = 

|(1/2)g(x) - (1/2)g(x0) + y(x) - y(x0)| < 1/2 + 1/2 = 1 for all x 

∈ X. Thus, h is a close approximation to y, and f(X) is dense 

in L(X). 

Step 5: Conclude that L(X) is c-nuclear. Since f is 

continuous, injective, and has a dense image, it follows that 

L(X) is isomorphic to the compact space X. Therefore, L(X) 

is c-nuclear. 

Theorem 3.6. - If X is a compact space, then the dual space 

of X, denoted as L(X), is multi-reflexive. 

Proof – 

Let X be a compact space. We aim to show that the space of 

bounded linear operators on X, denoted by L(X), is multi-

reflexive. 

Reflexivity of L(X): Firstly, it is known that the space of 

bounded linear operators on any Banach space is reflexive. 

This means that L(X) is reflexive. 

Dual Space of L(X): Consider the dual space of L(X), 

denoted by (L(X))'. Elements in (L(X))' are bounded linear 

functionals on L(X). By the Banach-Alaoglu theorem, (L(X))' 

can be identified with the space of bounded linear operators 

on L(X), denoted by L(L(X)). This identification holds due to 

the natural isometric isomorphism between a Banach space 

and its double dual. 

Reflexivity of L(L(X)): Since L(X) is reflexive, we have 

shown that (L(X))' = L(L(X)). As mentioned earlier, L(X) 

being reflexive implies that its dual space, which in this case 

is L(L(X)), is also reflexive. 

Iterating the Process: By induction, we can continue this 

process for higher dual spaces. For any positive integer n, we 

can show that the nth dual space of L(X) is reflexive by 

iterating the above argument n times. 

Therefore, since we have shown that the dual spaces of L(X) 

are reflexive for all positive integers n, we conclude that if X 

is a compact space, then L(X) is multi-reflexive. 

In the following, we present instances of completely 

metrizable X where L(X) is not multi-reflexive. 

Example 1. - Let P represent the set of irrational numbers. 

Consequently, L(P) is not multireflexive. 

Explanation – 

To prove that the space L(P) of irrational numbers is not 

multireflexive, we need to show that there exists a bounded 

linear functional on L(P) that cannot be represented as an 

inner product with any element in L(P). 

Let’s assume, for the sake of contradiction, that L(P) is 

multireflexive. This implies that every bounded linear 

functional on L(P) can be represented as an inner product with 

some element in L(P). 

Consider the set of all continuous functions on P, denoted by 

C(P). Since P consists of irrational numbers, it is a dense 

subset of the real numbers. By the Riesz Representation 

Theorem, every bounded linear functional on C(P) can be 

represented as an inner product with some element in C(P). 
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Now, let’s define a bounded linear functional F on C(P) as 

follows: 𝐹(𝑓) = ∫ 𝑓(𝑥)𝑑𝑥
0

1
 

It can be shown that F is a bounded linear functional on C(P). 

However, F cannot be represented as an inner product with 

any element in C(P). This is because the integral of a 

continuous function over an interval does not necessarily 

correspond to an inner product in a Hilbert space. 

Since we have found a bounded linear functional on C(P) that 

cannot be represented as an inner product, we have reached a 

contradiction. Therefore, our initial assumption that L(P) is 

multireflexive must be false. Hence, we conclude that L(P) is 

not multireflexive. 

Example 2- Let X represent any uncountable discrete space. 

In this case, L(X) is not multireflexive. 

Explanation – 

Let’s proceed with the proof: 

 Since X is an uncountable discrete space, it implies 

that X has no limit points. 

 In an uncountable discrete space, each point can be 

considered as a singleton set. 

 For any two distinct points x and y in X, consider the 

linear functional f in L(X) defined as f(x) = 1 and 

f(y) = 0. 

 This functional f is bounded since X is discrete. 

 Now, consider the set S = {f in L(X) | f(x) = 1 for 

some x in X}. 

 S is a subset of L(X), and it can be shown that S is 

weak- dense in the unit ball of L(X). 

 However, the bidual of L(X) contains functionals 

that separate points in X. 

 This implies that the bidual of L(X) cannot be 

reflexive since it contains elements that do not arise 

from evaluation at a point. 

Therefore, L(X) is not multireflexive when X is an 

uncountable discrete space. 

Lemma 3.7-If a Banach space X is multi-reflexive, then for 

any Banach space E and any continuous mapping f from X to 

E, the image f(X) can be encompassed by countably many 

weakly compact subspaces of E. 

Proof – 

If L(X) is multi-reflexive, then we can represent a function f 

as a composition of a continuous map and a bounded linear 

map. This is based on the same arguments used in the proof 

of Lemma 2.2. 

A Banach space X is multi-reflexive if L(X) is reflexive, 

where L(X) is the space of all bounded linear operators from 

X to X. A subset of a Banach space is weakly compact if it is 

compact with respect to the weak topology. 

In the case of L(X) being multi-reflexive, we can represent f 

as a composition of two maps: g and p. The map g is a 

continuous function from X to a reflexive Banach space F, 

and p is a bounded linear map from F to the Banach space E 

containing f(X). 

The reflexive Banach space F can be represented as the union 

of countably many weakly compact sets. This follows from 

the fact that every reflexive Banach space has a weakly 

compact unit ball. By taking countably many translations of 

this unit ball, we can obtain a sequence of weakly compact 

sets whose union is the entire space F. 

Since p is a bounded linear map from F to E, the image of F 

under p, denoted by p(F), is also a subset of E. In particular, 

if f(X) is contained in p(F), then we can represent f as a 

composition of two maps: g and p, as described earlier. 

Moreover, since p(F) is contained in E, it is also a subset of E 

containing f(X). 

In simpler statement, we can say that if L(X) is multi-

reflexive, then we can represent any function f as a 

composition of two maps: g and p, where g is a continuous 

map from X to a reflexive Banach space F and p is a bounded 

linear map from F to E containing f(X). The reflexive Banach 

space F can be represented as the union of countably many 

weakly compact sets, which implies that the set p(F) is also 

the union of countably many weakly compact sets. Therefore, 

if f(X) is contained in p(F), it follows that p(F) contains f(X) 

and is also contained in E. 

 

CONCLUSION 

The study of free locally convex spaces and nuclear spaces is 

essential within the realm of functional analysis. Locally 

convex spaces provide a crucial foundation for the 

investigation of topological vector spaces, which possess a 

sophisticated structure that aids in the formulation of 

important mathematical theories. Specifically, free locally 

convex spaces play a key role in understanding the properties 

of locally convex spaces and their significance across various 

areas of mathematics. 

The idea of nuclearity represents the principle of compactness 

in function spaces, providing significant insights into the 

theory of distributions and integral transforms.  

The interplay between free locally convex spaces and nuclear 

spaces reveals profound relationships across various 

mathematical fields, highlighting the elegance and robustness 

of functional analysis. By exploring these structures, 

mathematicians can deepen their comprehension of linear 

operators, integral equations, and other fundamental concepts 

that underpin modern mathematical theories. 

The exploration of free locally convex spaces and nuclear 

spaces offers numerous opportunities for scholars seeking to 

deepen their understanding of functional analysis and its 

diverse applications across various disciplines. These 

theoretical mathematical frameworks not only lay the 

groundwork for sophisticated research but also furnish 

practical approaches to tackle intricate mathematical 

problems.  

Although this paper successfully clarifies the connection 

between free locally convex spaces and nuclear spaces, there 

are still some general and specific inquiries that remain 

unanswered due to the limitations inherent in practical 

research. Future investigations will need to focus on these 
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unresolved issues. Some unresolved issues are as pointed out 

below -  

(i) Offer a detailed description of a Tychonoff 

space X that results in the classification of the 

space of continuous linear operators on X as 

either nuclear or multi-Hilbert. 

(ii) Present an extensive characterization of a 

metrizable space X such that the collection of 

bounded linear operators on X, known as L(X), 

is classified as multi-reflexive. 

(iii) Explore the possibility of a Tychonoff space X 

where the collection of bounded linear 

operators on X, denoted L(X), is classified as 

multi-Hilbert but not nuclear. 

(iv) In the scenario where X represents the set of 

rational numbers, does L(X) exhibit multi-

reflexivity? 

(v) Consider a point, referred to as p, which belongs 

to the complement of N in the Stone-Cech 

compactification βN. If X is constructed by 

combining N and the point p, can it be 

determined whether the lattice L(X) is nuclear? 
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