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ABSTRACT: Cylindrical manipulators are extensively used in industrial automation, especially in emerging technologies like 3D 

printing, which represents a significant future trend. However, controlling the trajectory of nonlinear models with system 

uncertainties remains a critical challenge, often leading to reduced accuracy and reliability. To address this, the study develops an 

Adaptive Sliding Mode Controller (ASMC) integrated with Neural Networks (NNs) to improve trajectory tracking for cylindrical 

manipulators. The ASMC leverages the robustness of sliding mode control and the adaptability of neural networks to handle 

uncertainties and dynamic variations effectively. Simulation results validate that the proposed ASMC-NN achieves high trajectory 

tracking accuracy, fast response time, and enhanced reliability, making it a promising solution for applications in 3D printing and 

beyond. 
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I. INTRODUCTION 

Cylindrical manipulators play a critical role in industrial 

automation due to their flexibility and high precision, 

particularly in cutting-edge applications such as 3D printing, 

a future-defining technology. These manipulators must 

perform accurate trajectory tracking under dynamic and 

uncertain conditions, making robust and adaptive control 

systems crucial for ensuring operational efficiency. However, 

nonlinear dynamics, external disturbances, and system 

uncertainties pose significant challenges, often resulting in 

reduced accuracy and reliability in real-world applications. 

Addressing these challenges is an urgent requirement to 

enhance the performance of control systems. [1-3] 

Various control strategies have been proposed to improve the 

trajectory tracking capabilities of robotic manipulators. 

Traditional Proportional-Integral-Derivative (PID) 

controllers remain popular due to their simplicity and ease of 

implementation. However, they are less effective in 

managing complex nonlinear systems and uncertainties [4-6]. 

A study in [4] focused on PID tracking control of robot 

manipulators, aiming to improve precision and efficiency. 

Researchers in [5] developed a non-linear PID controller for 

trajectory tracking of a differential drive mobile robot to 

enhance system responsiveness. Additionally, [6] proposed 

an efficient PID tracking control method for robotic 

manipulators driven by compliant actuators to boost 

performance and accuracy. These studies have significantly 

contributed to enhancing control system performance and 

precision but require further optimization to effectively 

handle nonlinearities and complex dynamic scenarios.  

Sliding Mode Controllers (SMC) are recognized for their 

robustness against disturbances and uncertainties [7-9]. In [7], 

robust sliding mode control was developed for robot 

manipulators to improve stability and robustness under 

various disturbances. Research in [8] combined PD with 

sliding mode control for trajectory tracking in robotic systems, 

aiming to enhance precision and response times. Furthermore, 

[9] explored trajectory planning and second-order sliding 

mode motion/interaction control for robotic manipulators 

operating in unknown environments, focusing on improving 

adaptability and interaction capabilities. These studies 

highlight significant advancements in sliding mode control 

techniques. However, the chattering phenomenon limits their 

performance and can cause mechanical wear [10]. To 

overcome these limitations, recent studies have focused on 

integrating artificial intelligence technologies, particularly 

Neural Networks (NNs), to approximate system uncertainties 

and enhance adaptability. While hybrid methods have shown 

promise, achieving a balance between robustness and 

adaptability remains a significant challenge [11-17]. In [11], 

fuzzy-neural-network inherited sliding-mode control was 

developed for robot manipulators, incorporating actuator 

dynamics to enhance control performance. In [12], a neural 

network-based sliding mode adaptive control method was 

proposed to improve the adaptability and precision of robot 

manipulators. The study in [13] focused on robust adaptive 

sliding mode neural networks control for industrial robot 
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manipulators, aiming to enhance system robustness and 

stability. Additionally, [14] explored the use of fuzzy wavelet 

neural networks in robust adaptive sliding mode control for 

industrial robots, targeting improved performance under 

varying conditions. Further, [15] introduced recurrent fuzzy 

wavelet neural networks for robust adaptive sliding mode 

control of industrial robot manipulators, emphasizing 

enhanced learning and control capabilities. Lastly, in [16], 

neural-network-based terminal sliding-mode control was 

examined, including actuator dynamics to achieve better 

control accuracy and responsiveness. These studies 

demonstrate the significant advancements in robotic control 

through the integration of Sliding Mode Control and neural 

networks, leading to enhanced precision, robustness, and 

adaptability of robotic manipulators in complex and dynamic 

environments [17]. 

This study addresses the challenges of cylindrical 

manipulators by developing a Sliding Mode Controller (SMC) 

integrated with Neural Networks (NNs). The proposed 

controller combines the robustness of sliding mode control to 

handle disturbances and uncertainties with the adaptability of 

neural networks, which estimate system variations and adjust 

the control signals accordingly. This framework is applied to 

the trajectory tracking problem in 3D printing, a rapidly 

growing technology with stringent performance demands. 

Simulation results demonstrate that the proposed controller 

achieves high trajectory tracking accuracy, fast response 

times, and improved reliability, paving the way for its 

application in 3D printing and other industrial fields. 

In summary, this study emphasizes the importance of robust 

control systems for cylindrical manipulators and introduces 

an innovative ASMC-NN approach to address key trajectory 

tracking challenges. The findings lay a foundation for 

enhancing the precision and reliability of cylindrical 

manipulators in advanced automation applications. 

 

II. MODELING OF CYLINDRICAL 

MANIPULATOR 

To develop an effective control strategy for a cylindrical 

manipulator, a precise mathematical model is essential. This 

model serves as the basis for designing the Adaptive Sliding 

Mode Controller, enabling accurate trajectory tracking 

despite the presence of system uncertainties. 

A cylindrical manipulator typically consists of three main 

degrees of freedom: 

+ Rotational Motion (Joint 1): Rotation around the base, 

allowing the manipulator to access a circular workspace. 

+ Vertical Linear Motion (Joint 2): Linear movement 

along the vertical axis, facilitating height adjustments. 

+ Radial Linear Motion (Joint 3): Linear movement along 

the radial axis, enabling the end-effector to reach varying 

distances from the base. 

This configuration makes cylindrical manipulators 

particularly suited for tasks requiring precise positioning 

within a constrained workspace, such as 3D printing. 

The dynamics of the cylindrical manipulator are derived 

using the Lagrangian formulation, which describes the 

system's total energy: 

𝐿(𝑞, �̇�) = 𝐾(𝑞, �̇�) − 𝑃(𝑞) (1) 

Where: 𝐿(𝑞, �̇�) is the Lagrangian, representing the system's 

total energy, 𝐾(𝑞, �̇�)  is the kinetic energy, 𝑃(𝑞)  is the 

potential energy. 

The Lagrangian approach leads to the following equation of 

motion: 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐹(𝑞)𝑞 + 𝐺(𝑞) = 𝜏 − 𝑓𝑒𝑥𝑡  (2) 

where: ( 𝑞, �̇�, �̈�) ∈ 𝑅𝑛×1   are joint position, velocity, and 

acceleration vectors. 𝑀(𝑞) ∈ 𝑅𝑛×𝑛  is the symmetric and 

positive definite inertia matrix.. 𝐶(𝑞, �̇�) ∈ 𝑅𝑛×𝑛  represents 

the Coriolis and centripetal forces.  G (𝑞) ∈ 𝑅𝑛×1  is the 

gravity vector. 𝐹(𝑞) accounts for friction forces. 𝑓𝑒𝑥𝑡 ∈ 𝑅𝑛×1 

represents external disturbance forces. 𝜏 ∈ 𝑅𝑛×1 is the joints 

torque input vector. 

 
Figure 1. The cylindrical manipulator 

 

For a three-joint cylindrical manipulator, the dynamics are expressed in matrix form: 

[

τ1

τ2

τ3

] = [

A11 A12 A13

A21 A22 A23

A31 A32 A33

] × [
θ̈1

q̈2

q̈3

] + [

B11 B12 B13

B21 B22 B23

B31 B32 B33

] × [

θ̇1
2

q̇2
2

q̇3
2

]    + [

C11 C12 C13

C21 C22 C23

C31 C32 C33

] × [

θ̇1q̇2

θ̇1q̇3

q̇2q̇3

] + [

D1

D2

D3

] 

where:  

A11 = (4𝑚1 sin 𝜃1 − 4𝑚2 cos 𝜃1)𝑞3 + 𝐼3 

A13 = (𝑚1 + 𝑚2)(sin 𝜃1 cos 𝜃1)𝑞3 

A22 = 𝑚3; A31 = 𝑚1 sin 𝜃1 cos 𝜃1 

A33 = 2(𝑚1 sin 𝜃1 + 𝑚2 cos 𝜃1); A12 = A21 = A23 = A32 = 0;  

B11 = (𝑚1 sin 𝜃1 − 4𝑚2 cos 𝜃1)𝑞3 

B13 = −𝑚1 cos 𝜃1 + 𝑚2 sin 𝜃 

B31 = 2𝑞3(𝑚1 sin 𝜃1 − 𝑚2 cos 𝜃1) ;  
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B12 = B21 = B22 = B23 = B32 = B33 = 0  

C12 = −(𝑚1 + 𝑚2)(sin 𝜃1 cos 𝜃1)𝑞3 

C32 = −(𝑚1 + 𝑚2)(sin 𝜃1 cos 𝜃1) 

C11 = C13 = B21 = C22 = C23 = C31 = C33 = 0 

D2 = 𝑔(𝑚2+𝑚3); D1 = D3 = 0 

Where: im  are the mass of joint and li are the length of joint of Cylindrical Manipulator, respectively, 
2

3 1 (kg/m )I   is the moment 

of inertia of joint 3, respectively, and 
29.8 (m/s )g   is acceleration of gravity. The values of the parameters of each joint of the 

manipulator are shown in Table 1. 

 

Table 1. Values of masses (m) and lengths (l) of each joint 

Joint m (kg) l (m) 

1 (𝜃1) 36.367405 0.05 

2 (𝑞2) 12.632222 0.79 

3 (𝑞3) 23.735183 0.9 

 

The dynamics provide a comprehensive framework for understanding the cylindrical manipulator's motion and developing the 

ASMC. Future sections will focus on integrating Neural Networks to improve adaptability and address system uncertainties 

effectively. 

 

III. ADAPTIVE SLIDING MODE CONTROLLER 

WITH NEURAL NETWORKS (ASMC-NN) 

The Adaptive Sliding Mode Controller with Neural Networks 

(ASMC-NN) combines the robustness of Sliding Mode 

Control (SMC) with the adaptive capabilities of Neural 

Networks (NNs) to address system uncertainties and improve 

trajectory tracking performance. This section details the 

design and mathematical formulation of the proposed 

controller. 

* Sliding Mode Control Design 

The SMC framework is designed to ensure system states 

converge to the desired trajectory despite disturbances and 

uncertainties. The system dynamics (2) are given by: 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐹(𝑞)𝑞 + 𝐺(𝑞) = 𝜏 − 𝑓𝑒𝑥𝑡  

Define the tracking error as: 𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡);  �̇�(𝑡) =

�̇�𝑑(𝑡) − �̇�(𝑡) 

The sliding surface 𝑠(𝑡)  is defined to ensure error 

convergence: 

𝑠(𝑡) = �̇�(𝑡) + 𝜆𝑒(𝑡) (3) 

Where 𝜆 > 0 is a design parameter. 

The control input 𝜏 for SMC is designed as: 

𝜏 = 𝜏𝑒𝑞 + 𝜏𝑠𝑤 (4) 

+ Equivalent Control 𝜏𝑒𝑞: Ensures the system remains on 

the sliding surface. 

𝜏𝑒𝑞 = 𝑀(𝑞)�̈�𝑑 + 𝐶(𝑞, �̇�)�̇�𝑑 + 𝐺(𝑞) (5) 

+ Switching Control 𝜏𝑠𝑤: Compensates for disturbances 

and uncertainties. 

𝜏𝑠𝑤 = −𝑘𝑆𝑖𝑔𝑛(𝑠) (6) 

Where 𝑘 > 0  is a gain parameter, and 𝑆𝑖𝑔𝑛(𝑠)  introduces 

robustness but can lead to chattering. 

To reduce chattering 𝑆𝑖𝑔𝑛(𝑠)  can be replaced with a 

continuous approximation such as: 

𝑆𝑖𝑔𝑛(𝑠) ≈
𝑠

𝜖+|𝑠|
 (7) 

Where 𝜖 > 0 is a small positive constant. 

* Neural Network Integration 

Neural Networks are introduced to approximate system 

uncertainties ∆𝜏, which are difficult to model explicitly. The 

control law is modified as: 

𝜏 = 𝜏𝑒𝑞 + 𝜏𝑠𝑤 + 𝜏𝑁𝑁 (8) 

Where 𝜏𝑁𝑁  is the output of the neural network, 

approximating ∆𝜏 

A feedforward NN is used, consisting of: 

+ Input Layer: 𝑞, �̇�, 𝑠 

+ Hidden Layers: Nonlinear activation functions 

+ Output Layer: Single output 𝜏𝑁𝑁 

The NN is trained using a backpropagation algorithm to 

minimize the error: 

𝐸 =
1

2
‖∆𝜏 − 𝜏𝑁𝑁‖2 (9) 

The modified control law becomes: 

𝜏 = 𝜏𝑒𝑞 − 𝑘
𝑠

𝜖+|𝑠|
+ 𝜏𝑁𝑁 (10) 

* Adaptive Mechanism 

To improve performance, the NN weights 𝑊  are updated 

online using an adaptation law: 

�̇� = 𝛾
𝜕𝐸

𝜕𝑊
= 𝛾𝑠𝜙(𝑞, �̇�, 𝑠) (11) 

Where 𝛾 > 0  is a learning rate, and 𝜙  represents the NN 

activation function. 

Using a Lyapunov candidate function: 

𝑉 =
1

2
𝑠2 +

1

2
𝑇𝑟(𝑊𝑇𝑊) (12) 

The derivative of 𝑉 is: 

�̇� = 𝑆 + 𝑇𝑟(𝑊𝑇�̇�) (13) 

Substituting the control law and adaptation rule ensures �̇� <

0 guaranteeing stability. 
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Combining SMC and NN, the unified control law is: 

𝜏 = 𝑀(𝑞)�̈�𝑑 + 𝐶(𝑞, �̇�)�̇�𝑑 + 𝐺(𝑞) − 𝑘
𝑠

𝜖+|𝑠|
+ 𝜏𝑁𝑁 (14) 

The adaptive mechanism dynamically adjusts NN weights to 

minimize approximation errors. Simulation results in the next 

section will demonstrate the effectiveness of ASMC-NN in 

trajectory tracking and robustness against disturbances. 

 

IV. SIMULATION RESULTS 

- Constant Desired Trajectory 

 
Figure 2. Trajectory responses of joints for the constant desired trajectory 

 

Figure 3. Tracking errors of joints for the constant desired trajectory 

 

The desired joint values were set as: 𝜃1 =
𝜋

3
, 𝑞2 =

𝜋

2
, 𝑞3 = 𝜋. 

The simulation results confirm that the proposed ASMC 

achieves rapid trajectory tracking, with errors converging to 

zero within 0.5 seconds. Notably, there is no overshoot 

observed, indicating excellent stability and control precision. 

Figures 2 and 3 illustrate the trajectory responses and tracking 

errors of the joints, respectively, showcasing the controller’s 
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ability to follow the desired trajectory accurately and 

efficiently. 

- Uncertain Desired Trajectory 

 
Figure 5. Trajectory responses of joints for the uncertain desired trajectory 

 

 
Figure 6. Tracking errors of joints for the uncertain desired trajectory 

 

For an uncertain desired trajectory, the ASMC exhibits 

superior tracking performance. The controller effectively 

minimizes the tracking error while maintaining system 

stability. The results demonstrate smooth trajectory tracking 

without oscillations, even under varying conditions, 

highlighting the robustness and adaptability of the proposed 

method. 

Figures 5 and 6 show the trajectory responses and tracking 

errors, confirming the high precision and stability of the 

ASMC under uncertain conditions. 

- Sinusoidal Desired Trajectory 
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Figure 7. Trajectory responses of joints for the sinusoidal desired trajectory 

 
Figure 8. Tracking errors of joints for the sinusoidal desired trajectory 

 

When subjected to a sinusoidal desired trajectory defined as 

𝜃1 = 𝑞2 = 𝑞3 = 1sin (2𝜋𝑡), the ASMC outperforms both the 

SMC and fuzzy-SMC controllers. The proposed controller 

achieves faster response times and lower tracking errors. The 

results underline the ASMC's superior ability to handle 

dynamic trajectories with high accuracy. 

Figures 7 and 8 present the trajectory responses and tracking 

errors for the sinusoidal input, demonstrating the clear 

advantage of the ASMC over the comparison controllers. 

- Disturbance at Joint 3 
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Figure 9. Trajectory responses of joints under disturbance at joint 3 

 
Figure 10. Tracking errors of joints under disturbance at joint 3 

 

A disturbance was introduced at joint 3 at t = 0.5s The ASMC 

showed remarkable robustness by rapidly suppressing the 

disturbance and restoring the system to the desired trajectory. 

Compared to the SMC and fuzzy-SMC controllers, the 

ASMC demonstrated faster disturbance rejection and error 

recovery, underscoring its superior noise-handling 

capabilities. 

Figures 9 and 10 depict the trajectory responses and tracking 

errors under this scenario, highlighting the resilience and 

effectiveness of the ASMC in maintaining performance under 

external disturbances. 

 

V. CONCLUSION 

This study presented the development of an Adaptive Sliding 

Mode Controller integrated with Neural Networks (ASMC-

NN) to enhance trajectory tracking performance for 

cylindrical manipulators, particularly in applications like 3D 

printing. By combining the robustness of Sliding Mode 

Control with the adaptability of Neural Networks, the 

proposed controller effectively addressed system 

uncertainties and nonlinear dynamics, achieving high 

accuracy and reliability. 

Simulation results demonstrated that the ASMC-NN 

significantly reduced tracking errors, improved response 
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times, and enhanced system stability compared to traditional 

methods. These findings underscore the potential of the 

ASMC-NN approach for advancing control strategies in 

industrial automation and other precision-demanding 

applications. Future research may focus on experimental 

validations and extending the approach to more complex 

manipulator configurations. 
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