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ABTSRACT: This study leverages recent theoretical and methodological advancements to design and evaluate a Metacognitive 

Artificial Intelligence (MAI) system. This study employs the WOz approach from the field of human-computer interaction, to 

explore the design of technological systems that support human-AI collaboration. This study supports the view that human-AI 

collaboration in research with multidisciplinary joint forces will facilitate empirical evidence and design work to articulate human-

AI collaboration. 

 

INTRODUCTION 

The widespread adoption of Artificial Intelligence (AI) across 

diverse domains of work and daily life highlights the critical 

need to equip individuals with the skills to collaborate 

effectively not only with their peers but also within socio-

technological ecosystems that integrate AI. Harnessing the 

complementary strengths of humans and AI offers the 

potential to generate unique insights and advance 

collaborative practices. 

This research builds upon contemporary theoretical 

and methodological progress to conceptualize and assess a 

Metacognitive Artificial Intelligence (MAI) framework. 

Following a concise review of intelligent systems, the study 

introduces the Human-AI Shared Regulation in Learning 

(HASRL) model, which serves as a foundational paradigm 

for examining and enhancing human-AI interactions. 

Utilizing the Wizard of Oz (WOz) methodology 

from the domain of human-computer interaction, this study 

investigates the development of technological systems 

designed to facilitate human-AI collaboration. The findings 

underscore the significance of interdisciplinary efforts in 

advancing empirical research and design initiatives to 

articulate and improve the dynamics of human-AI 

cooperation. 

 

REVIEW OF EXISTING WORK 

The rapid integration of AI into various dimensions of daily 

life necessitates a fundamental reassessment and refinement 

of existing theoretical frameworks to effectively support the 

synergy between human and artificial intelligence in 

collaborative processes (Gašević et al., 2023; Nguyen et al., 

2024).  

Human-AI collaboration can be understood as an 

agentic process, wherein individuals actively and 

strategically manage their interactions with AI systems and 

tools (Zimmerman, 1989). While the transformative potential 

of multimodal data and AI-driven methodologies in fostering 

human-AI collaboration is widely acknowledged, the design 

and implementation of systems that harness these capabilities 

remain limited. 

Creating a robust AI-enhanced system that 

facilitates effective human-AI collaboration poses significant 

challenges. These challenges arise from the intricate task of 

developing systems that are not only grounded in solid 

theoretical principles but also demonstrate advanced 

technological capabilities to address the complex dynamics 

of collaboration. 

Addressing such complexities calls for the 

integration of hybrid intelligence—a fusion of human and 

artificial intelligence designed to amplify human cognitive 

capabilities rather than replace them with AI systems. By 

combining human intentionality and expertise with machine 

intelligence, hybrid intelligence strives to create seamless 

cooperation between AI agents and human users (Akata et al., 

2020). 

Holstein et al. (2020) propose a comprehensive 

framework of dimensions to characterize hybrid human-AI 

adaptations, offering valuable insights into how these 

approaches can inspire innovative possibilities. 

Before progressing further into the exploration of 

intelligent systems, it is essential to establish a clear 

definition of intelligence as a foundational concept. 

 

REVIEW OF EXISTING THEORIES ON 

INTELLIGENCE SYSTEMS 

Minsky’s 1968 definition of artificial intelligence offers a 

foundational view of the mind as a collection of static, 

vertical programs collectively enabling “intelligence”: “AI is 

the science of making machines capable of performing tasks 

that would require intelligence if done by human beings.” 

This concept aligns with Turing’s earlier vision, proposed in 

his seminal 1950 paper, which suggested that machines could 

https://doi.org/10.47191/etj/v9i11.14


“Designing and Evaluating a Metacognitive AI System for Enhanced Human-AI Collaboration: A Woz Approach” 

5550 Ayse Kok Arslan, ETJ Volume 09 Issue 11 November 2024 

 

acquire skills through a learning process analogous to that of 

human children. 

With the evolution of AI research, the philosophy of 

intelligence has shifted significantly. The resurgence of 

machine learning in the 1980s, its growing intellectual 

prominence in the early 2000s, and its dominance by the late 

2010s through Deep Learning positioned the connectionist-

inspired Tabula Rasa as a prevailing philosophical 

framework. This approach draws on Locke’s concept of the 

mind as a blank slate—an adaptable, general process capable 

of transforming experience into behavior, knowledge, and 

skills—shaping the history of cognitive science and modern 

AI paradigms. 

In 2007, Legg and Hutter synthesized over 70 

definitions of intelligence into a concise formulation: 

“Intelligence measures an agent’s ability to achieve goals in 

a wide range of environments.” They observed that no 

comprehensive survey of intelligence definitions or 

evaluation methods had been published at the time. A decade 

later, Hernández-Orallo addressed this gap with an extensive 

survey and a detailed book on AI evaluation. These works 

highlighted two fundamental characteristics often embedded 

in intelligence definitions: task-specific proficiency 

(“achieving goals”) and general adaptability (“in a wide 

range of environments”). An intelligent agent, according to 

this framework, demonstrates high proficiency across diverse 

tasks, including the ability to acquire new skills for 

previously unknown challenges, embodying true generality. 

The structure of human intelligence, as outlined in major 

theories, follows a hierarchical model with three 

interconnected layers: 

 General intelligence (g factor) at the top, 

representing extreme generalization. 

 Broad abilities in the middle, encompassing 

domain-specific generalization. 

 Specialized skills or task-specific abilities at the 

bottom, representing local generalization or cases 

with no generalization. 

In this hierarchical framework, the g factor encapsulates 

the highest level of generalization, while broad cognitive 

abilities and specialized skills reflect varying degrees of 

adaptability across domains and tasks. For instance, 

achieving proficiency across a diverse set of video games 

serves as a practical example of broad generalization, with 

skill acquisition for novel tasks demonstrating the agent's 

potential for extreme generalization. 

 

 

 
Figure 1. Hierarchical model of human intelligence 

 

"Generalization" or "generalization power" in the context of 

AI refers to the ability of an AI system to handle situations or 

tasks that differ from those it has previously encountered. 

Since the concept of "previously encountered situations" can 

be ambiguous, it is useful to categorize generalization into 

five distinct types, each addressing different scenarios and 

levels of adaptability: 

1. System-Centric Generalization 

This pertains to a learning system's capacity to handle 

situations it has not directly encountered during training. It 

aligns with the formal notion of generalization error in 

statistical learning theory. For example, a machine learning 

classifier trained on a dataset of NNN samples demonstrates 

system-centric generalization if it accurately classifies 

images outside the training set. 

2. Developer-Aware Generalization 

This represents the ability of a system to handle situations 

unfamiliar to both the system itself and its developer. Here, 

the system goes beyond merely adapting to unseen data by 

addressing scenarios not envisioned by its creator. 

3. Local Generalization (or “Robustness”) 

Local generalization reflects a system's capacity to adapt to 

new inputs within a familiar distribution for a specific task. It 

requires the system to tolerate anticipated perturbations or 

variations in a fixed context, provided the data samples 

sufficiently represent the known distribution. 

4. Broad Generalization (or “Flexibility”) 

Broad generalization refers to the system's ability to handle a 

diverse category of tasks and environments without 

additional human intervention. This includes unforeseen 
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situations, showcasing a system's flexibility to adapt to broad, 

previously undefined scenarios. 

5. Extreme Generalization 

Extreme generalization describes open-ended systems 

capable of addressing entirely new tasks that share only 

abstract similarities with previously encountered situations. 

Such systems exhibit the highest level of adaptability, 

transcending specific domains or contexts to operate in a wide 

scope of tasks. 

The progression from system-centric to extreme 

generalization reflects an increasing level of adaptability and 

complexity, where higher levels address broader, less 

predictable scenarios. 

In this framework, Solomonoff et al. (2024) propose that 

generalization operates on the assumption of: 

 

 A fixed universal Turing machine: All relevant 

programs—skill programs, task-specific programs, 

and components of the intelligent system—are 

executed on this machine. 

 A fixed "situation space" and "response space": 

These spaces represent the input scenarios the 

system may encounter and the potential responses it 

can generate. 

This theoretical model underpins the design and evaluation of 

generalization in AI systems, establishing a structured 

foundation to explore their potential to learn, adapt, and 

handle new challenges. 

 

Figure 2. Overview of an intelligent system 

 

Solomonoff et al. (2024) present several critical observations 

regarding their conceptualization of the mind, emphasizing 

the relationship between intelligence, generalization, and 

adaptability in the context of high-intelligence systems. 

These insights are particularly relevant when considering the 

shift toward hybrid intelligence systems that combine human 

and AI capabilities. 

Key observations by Solomonoff et al. (2024) include, but are 

not limited to: 

1. Efficiency and Generalization in High-

Intelligence Systems 

A high-intelligence system is defined by its ability 

to generate high-skill solution programs for tasks 

with high generalization difficulty (e.g., tasks with 

significant uncertainty about the future). This 

requires the system to make highly efficient use of 

its available information and priors, enabling it to 

address unknown parts of the situation space with 

minimal experience. 

2. Scope-Dependent Measurement of Intelligence 

Intelligence is inherently tied to the choice of task 

scope and the value function assigned to these tasks. 

It may optionally include a sufficient skill level 

requirement for tasks within this scope. The 

adaptability and relevance of an intelligent system 

are determined by the breadth and depth of its 

defined task space. 

3. Adaptation as a Core Component of Intelligence 

Intelligence necessitates adaptation—extracting and 

operationalizing information from past experiences 

to navigate future uncertainties. A system with pre-

existing proficiency for evaluation tasks has low 

generalization difficulty and, thus, scores poorly on 

intelligence metrics emphasizing adaptability and 

learning. 

4. Beyond Curve-Fitting 

Intelligence transcends mere curve-fitting. A system 

that generates the simplest skill program consistent 

with known data can only handle tasks with zero 

generalization difficulty. To address future 

uncertainties, an intelligent system must produce 

behavioral programs capable of adapting to new, 

unforeseen situations. 

Building upon Solomonoff et al.’s observations, advancing 

AI-human collaboration necessitates a rethinking of how AI 

systems are designed and utilized. Hybrid intelligence—

blending human expertise with machine intelligence—

requires researchers to push beyond conventional boundaries 

to create systems that achieve synergy between humans and 

AI. 

Recent developments in AI have introduced innovative ways 

to utilize multimodal data from diverse sources, such as: 

 Digital traces like log data (Cho & Yoo, 2017) 
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 Physiological measures, including eye gazes (Taub 

& Azevedo, 2016) 

 AI-driven multimodal analytics, offering scalable 

data processing, analysis, and predictive capabilities 

(Nguyen, Järvelä, Rosé, et al., 2022; Sharma & 

Giannakos, 2020). 

These advancements allow for sophisticated insights and 

predictive modeling but also reveal significant gaps. Existing 

theoretical frameworks were developed before such 

multimodal capabilities emerged, and they fall short in 

addressing the complexities of AI-human collaboration in 

research and application contexts. 

While there has been progress in using AI to explore and 

support user self-regulation (Fan et al., 2022), little has been 

done to understand how researchers can effectively 

collaborate with AI to integrate human and machine 

intelligence. Filling this gap is essential for advancing hybrid 

intelligence and realizing its potential for transformative 

impacts in both theoretical and applied domains. 

This study seeks to address these challenges by establishing 

new approaches to integrating AI into collaborative 

processes, fostering a deeper understanding of AI-human 

synergy, and shaping the evolution of hybrid intelligence 

systems. 

 

THEORETICAL FRAMEWORK 

The integration of AI within socio-technical systems has 

inspired a variety of conceptual frameworks aimed at 

leveraging AI affordances and multimodal data to examine 

and address complex processes. These frameworks build on 

theoretical underpinnings of socio-technical systems, such as 

Leavitt’s (1964) model, and provide mechanisms to study and 

enhance human-AI collaboration. Below is a synthesis of 

these theoretical perspectives and their relevance to 

advancing AI-enabled collaborative systems. 

Leavitt’s (1964) socio-technical systems model provides a 

foundational lens for understanding the interplay between 

people, technology, tasks, and structure, all of which 

dynamically interact to produce emergent phenomena (Truex 

& Baskerville, 1998). 

 People: Users, developers, providers, and regulators 

shape and interact with AI systems, influencing their 

design and usage. 

 Technology: Includes multimodal tools such as 

affective computing techniques, chatbots, sentiment 

analysis, and avatars, which serve as problem-

solving enablers. 

 Task: Encompasses the practices and sequences 

required to achieve overarching goals, which are 

sensitive to contextual and situational demands. 

 Structure: Represents cultural, ethical, and 

institutional principles that shape governance, 

communication, and authority within AI systems. 

 

These components are deeply interconnected, producing 

emergent properties, such as consciousness in neural 

networks or collective behaviors in natural systems (Gloor, 

2006). The interplay between technology and structure, in 

particular, influences the ethical, legal, and societal 

implications of AI integration, while the interaction between 

tasks and structure defines how AI aligns with societal values 

and organizational goals. 

Within this context, the frameworks for collaboration and 

regulation in socio-technical AI systems can be summarized 

as follows: 

1. Collaboration as Cyclical and Recursive Processes 

Molenaar et al. (2021) emphasize that all types of 

collaboration involve cyclical and recursive processes. 

Regulatory responses emerge dynamically, shaped by the 

timing and sequence of actions observed during collaborative 

work. This perspective underscores the importance of 

identifying and responding to collaboration breakdowns or 

disruptions in real-time. 

2. Winne and Hadwin’s Four-Phase Model 

Winne and Hadwin’s (1998) model identifies four loosely 

sequenced and recursive phases of self-regulation: 

 Task definition, 

 Goal setting, 

 Strategic planning, and 

 Adaptation based on monitoring and evaluation. 

 

This framework, as expanded by Järvelä et al. (2018), 

highlights the role of collective monitoring and evaluation in 

guiding group decision-making and adapting collaborative 

practices in response to disruptions. This makes it particularly 

relevant for designing human-AI systems where feedback 

loops are critical for ensuring effective collaboration. 

3. Trigger Regulation Framework 

Järvelä and Hadwin (2024) introduce the concept of trigger 

events, defined as situations or disruptions that may inhibit 

collaboration and require regulatory responses. This 

framework facilitates examining the timing, frequency, and 

sequences of regulatory traces (Saint et al., 2020) to identify 

struggling individuals or teams and provide timely 

interventions or prompts to optimize collaboration. 

In this framework, trigger events are central to understanding 

how collaborative systems, particularly AI-supported ones, 

adapt to situational disruptions. 

4. Shared Regulatory Processes for Human-AI Systems 

Järvelä et al. (2023) expand on the trigger regulation 

framework to propose a structured model for understanding 

shared regulatory processes between humans and AI. Their 

framework emphasizes: 

 Mechanisms of interaction between human and AI 

regulatory processes, 

 Responsiveness to trigger events, and 

 Tuning AI models to enhance human regulatory 

capacities. 
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Inspired by these frameworks, this study adopts the Wizard 

of Oz (WOz) methodology from human-computer interaction 

to explore the design of socio-technological systems that 

support human-AI collaboration. The WOz approach 

simulates AI behavior by having a human operator perform 

AI tasks behind the scenes, allowing researchers to 

investigate: 

 How users interact with AI systems, 

 The efficacy of proposed designs, and 

 The dynamics of regulatory processes in hybrid 

collaboration settings. 

This approach enables researchers to refine AI system designs 

iteratively, ensuring alignment with the theoretical principles 

outlined in the frameworks above. 

 

RESEARCH METHODOLOGY 

The Echeloned Design Science Research (eDSR) framework, 

introduced by Tuunanen et al. (2024), is a groundbreaking 

evolution of the traditional DSR methodology. It specifically 

addresses the challenges of complexity, time, and resource 

intensity associated with traditional DSR, particularly in the 

context of developing AI-enhanced systems for human 

collaboration.  

By breaking down the research process into hierarchical 

phases, or "echelons," eDSR enables researchers to focus on 

specific facets of a project in a logical and modular manner. 

This segmentation enhances clarity, improves manageability, 

and minimizes risk. 

The five echelons of eDSR include; 

1. Problem Analysis Echelon: 

o Identifies and refines the core research 

problem. 

o Establishes a foundation by aligning the 

problem with stakeholder needs and socio-

technical considerations. 

2. Objectives and Requirements Definition 

Echelon: 

o Outlines specific goals and requirements 

for the artefact. 

o Ensures alignment with theoretical 

frameworks, such as human-AI shared 

regulation or trigger-based collaboration 

models. 

3. Design and Development Echelon: 

o Focuses on iterative artefact creation, 

leveraging user-centered design principles 

and prototyping. 

o Iterations allow for feedback integration, 

ensuring the artefact evolves in alignment 

with its objectives. 

4. Demonstration Echelon: 

o Showcases the artefact in simulated or real-

world environments to validate its core 

functionality and feasibility. 

o May involve pilot studies or Wizard of Oz 

(WOz) experiments to simulate AI 

responses and user interactions. 

5. Evaluation Echelon: 

o Conducts rigorous assessments of the 

artefact's utility, usability, and 

effectiveness. 

o Employs both qualitative and quantitative 

methods to validate its impact on 

collaboration and regulatory processes. 

o  

The eDSR framework is particularly suited for research 

exploring human-AI shared regulation, as it: 

 Facilitates the integration of multimodal data (e.g., 

behavioral traces, interaction logs) into iterative 

design processes. 

 Aligns with frameworks like trigger event concepts 

and Winne & Hadwin’s model by incorporating their 

insights into the problem analysis and design phases. 

 Enables the design of adaptive AI tools that can 

dynamically respond to trigger events, thereby 

enhancing collaborative processes. 

 
Figure 3. Overview of eDSR Methodological Framework 

 

The integration of the Wizard of Oz (WOz) paradigm into the 

Echeloned Design Science Research (eDSR) framework 

enhances its ability to address the complexities and resource 

demands of developing sophisticated AI systems. By 
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adopting a "fail early, fail often" approach, eDSR enables 

researchers to mitigate risks early in the research process 

while maintaining adaptability to diverse project needs. This 

combination of structure and flexibility ensures that iterative 

feedback loops remain central, keeping research aligned with 

stakeholder needs and real-world applications. 

Each echelon in the eDSR framework incorporates dedicated 

validation points, encouraging researchers to test 

assumptions and design decisions at every stage. By 

validating artefact objectives, user needs, and system 

functionality incrementally, the framework reduces the 

likelihood of costly errors later in the process. The inclusion 

of these checkpoints enables: 

 Early Problem Identification: Issues are addressed 

during initial design iterations rather than after 

significant investments in development. 

 Iterative Refinement: Artefacts can evolve through 

successive cycles of testing, feedback, and redesign. 

 Continuous Stakeholder Engagement: Regular 

checkpoints ensure user and stakeholder 

involvement throughout the process, fostering trust 

and alignment. 

Wizard of Oz (WOz) Paradigm in eDSR 

The WOz paradigm plays a critical role in advancing the 

eDSR methodology, particularly within the Design and 

Development and Demonstration Echelons. By simulating AI 

system functionality through human intervention, WOz 

allows researchers to study interactions and collect valuable 

feedback without requiring a fully functional system. 

An example of WOz Workflow in eDSR can be provided as 

follows: 

1. Problem Analysis Echelon: 

o Identify interaction scenarios that would 

benefit from AI support (e.g., shared 

regulation in collaborative settings). 

2. Objectives and Requirements Echelon: 

o Define the system's expected 

functionalities and user interaction 

workflows. 

3. Design and Development Echelon: 

o Use WOz to prototype AI behavior (e.g., a 

simulated AI assistant that responds to user 

queries). 

4. Demonstration Echelon: 

o Conduct experiments where participants 

interact with the simulated system. For 

instance, a researcher ("wizard") may type 

responses to simulate natural language 

understanding and generation. 

5. Evaluation Echelon: 

o Analyze user feedback and interaction data 

to assess the artefact's effectiveness and 

inform further refinements. 

 

By incorporating the WOz paradigm into the eDSR 

methodology, researchers can significantly streamline the 

development of AI-enhanced systems. The ability to test and 

iterate on designs early and efficiently fosters a deeper 

understanding of user needs, reduces risks, and ensures that 

the final system is both functional and effective. Together, 

eDSR and WOz provide a robust framework for tackling the 

complexities of socio-technical systems while maintaining 

empirical rigor and practical relevance. 

 

DESIGN REQUIREMENTS AND PRINCIPLES FOR 

METACOGNITIVE ARTIFICIAL INTELLIGENCE 

(MAI) 

The research aims to design a Metacognitive AI (MAI) 

system that can enhance collaborative learning and shared 

regulation processes among users. To achieve this, the design 

of the system needs to align with established principles that 

guide effective collaboration and metacognitive engagement. 

Building on the work of Järvelä et al. (2015), the initial 

design requirements focus on three critical principles: 

1. Awareness: 

o Goal: To increase users’ awareness of their 

own and others’ collaboration processes. 

This principle fosters metacognitive 

engagement, allowing users to monitor, 

reflect on, and assess their collaborative 

strategies and progress. The ability to 

recognize how one is contributing to the 

collaboration (or where they may be falling 

short) is central to effective teamwork and 

learning. 

2. Externalization: 

o Goal: To support the externalization of 

users’ collaboration processes on a social 

plane. This principle enables users to share 

their thoughts, strategies, and approaches 

openly, thus providing greater insight into 

each participant’s reasoning and decision-

making. Such externalization is essential 

for collaborative knowledge co-

construction and refining skills. 

3. Prompting Regulation: 

o Goal: To prompt the acquisition and 

activation of regulatory processes, guiding 

users toward more effective collaboration. 

This principle focuses on the MAI system’s 

ability to support self-regulation by 

providing cues or feedback that prompt 

users to adjust their behavior when 

necessary, thereby improving the overall 

collaboration process. 

 

These principles together set the foundation for developing 

an AI system that not only supports the task at hand but also 
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enhances the metacognitive aspects of collaboration, 

enabling users to be more conscious of and engaged in their 

interactions. 

The Wizards of Oz (WOz) prototype serves as an initial 

demonstration of how the proposed MAI system could 

interact with users and support the collaboration process. The 

WOz prototype simulates an autonomous, proactive speech 

agent embedded within an iPad placed on the user's table, 

acting as if it can engage in real-time conversations with 

users. The key aspects of this prototype design are as follows: 

1. Proactive Interaction: 

o Unlike traditional systems that only 

respond to user input, the MAI agent in this 

prototype is designed to initiate 

interactions proactively. This behavior 

simulates an advanced, autonomous system 

capable of determining when and how to 

interact based on context or observed 

patterns in the conversation. 

2. Speech-based Interface: 

o The prototype leverages speech-based 

interaction to facilitate natural 

communication between users and the 

agent. This mirrors how an advanced AI 

system would operate in real-world 

collaborative settings, enabling the MAI to 

seamlessly integrate into discussions 

without disrupting the flow. 

3. Simulating Autonomous Actions: 

o In this setup, a human "wizard" operates 

behind the scenes, controlling the system’s 

responses without the user’s knowledge. 

The wizard’s goal is to simulate the agent’s 

behavior based on the predetermined 

principles (awareness, externalization, and 

prompting regulation). The wizard listens 

to user conversations and provides the 

illusion that the agent is interacting 

intelligently. 

4. Real-Time Feedback and Adaptation: 

o As the prototype operates in real-time, 

users interact with the speech agent, 

providing valuable insights into how well 

the system's behaviors align with the 

design principles. For example, the MAI 

system could prompt users to reflect on 

their contribution to the collaboration, or 

provide feedback on how they could 

improve their regulatory processes. 

Prototype Evaluation and Feedback 

The WOz prototype provides a controlled environment to 

explore how the MAI system might perform in a real-world 

scenario, allowing researchers to collect feedback from 

participants without needing to develop a fully functional AI 

system at the outset. During the demonstration: 

 User Interaction: Participants engage with the 

prototype, interacting with the speech agent as 

though it were fully autonomous. 

 Observational Data: Researchers observe how 

participants respond to the proactive interactions 

initiated by the MAI system and assess whether 

these interactions align with the principles of 

awareness, externalization, and prompting 

regulation. 

 User Feedback: After interacting with the 

prototype, participants provide insights into their 

experience, helping refine design requirements and 

system behavior for future iterations. 

The integration of the Wizards of Oz (WOz) paradigm 

within the eDSR framework for developing the 

Metacognitive AI (MAI) system enhances the ability to 

explore, prototype, and refine AI-driven collaborative tools 

without the need for extensive technological investments 

upfront. By simulating proactive interaction behaviors and 

evaluating real-time feedback from participants, this 

approach allows researchers to verify the feasibility and 

functionality of the proposed solution, ensuring that the final 

system is both practical and aligned with the research 

objectives.

 
Figure 4. Overview of Wizards of Oz Prototype 
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DISCUSSION AND SUGGESTIONS 

This interdisciplinary study explores the necessary 

methodological framework for the development of a 

Metacognitive Agent (MAI) designed to support 

collaborative processes in face-to-face environments. The 

research adopts the eDSR methodology (Tuunanen et al., 

2024), emphasizing the iterative refinement of design 

principles for MAI through the use of a Wizards of Oz (WOz) 

prototype. This methodological approach enables the 

exploration of MAI's role in enhancing collaboration and 

metacognition, critical aspects of complex human learning 

and interaction. 

Hybrid intelligence enables humans to learn from and 

reinforce each other, creating an adaptive feedback loop that 

promotes mutual growth and understanding (Akata et al., 

2020). 

This research aims to bridge theoretical insights with 

practical design strategies, contributing to the development of 

AI technologies that can support complex cognitive and 

metacognitive activities in collaborative contexts. By refining 

the design principles for MAI through an iterative process 

facilitated by the eDSR methodology and the WOz prototype, 

the study endeavors to create a more adaptive, flexible, and 

user-centric system that not only augments collaboration but 

also promotes deeper metacognitive engagement. 

The integration of hybrid intelligence, with AI acting as a 

complementary tool for human collaborators, holds 

significant promise for reshaping the landscape of collective 

learning and problem-solving. This work aims to inform the 

design of AI systems that not only perform tasks but also 

enhance human cognitive and socioemotional capabilities, 

ultimately supporting more effective, fulfilling, and adaptive 

collaborative experiences. 

 

FINAL REMARKS AND FUTURE DIRECTIONS 

Interdisciplinary collaborations that integrate the strengths of 

both humans and AI hold immense potential to transform the 

field of research and significantly advance our understanding 

of collaborative processes. By combining the cognitive, 

emotional, and social capabilities of humans with the 

computational power and analytical precision of AI, 

researchers and technologists can develop tools that not only 

optimize collaboration but also ensure that these tools are 

ethical, equitable, and effective for diverse user groups. 

The study argues that the fusion of human intelligence with 

AI has the capacity to generate unique insights that can 

deepen our understanding of human learning processes. 

Through human-AI collaboration, we can design systems that 

are tailored to support the cognitive and metacognitive needs 

of individuals engaged in complex tasks. AI tools can 

facilitate dynamic learning environments, where humans are 

empowered to reflect on and regulate their thinking 

processes, thus enhancing their capacity for self-directed 

learning and collaborative problem-solving. 

The synergy between human expertise and AI's ability to 

process large amounts of data, identify patterns, and simulate 

possible solutions offers the potential for novel approaches to 

addressing longstanding challenges in education, 

organizational behavior, and decision-making. Together, 

humans and AI can complement each other’s strengths, 

creating dynamic feedback loops that promote continuous 

learning and refinement of strategies. 

As AI research continues to evolve, interdisciplinary 

collaborations will be increasingly essential for unlocking the 

full potential of human-AI partnerships. Researchers who 

bring diverse expertise to the table will be able to explore 

novel methodological approaches and develop cutting-edge 

AI solutions that support complex collaborative activities. 

Furthermore, interdisciplinary collaborations can enable the 

identification of new research questions, methodological 

innovations, and sophisticated AI techniques that will drive 

the future of human-AI collaboration. These collaborations 

will be essential in designing AI systems that not only 

automate tasks but also enhance human capabilities—

creating tools that are adaptable, scalable, and aligned with 

users' cognitive and socioemotional needs. 

 

REFERENCES 

1. Akata, Zeynep, Mateja Jamnik, and Allan Ramsay. 

“Hybrid Intelligence: Combining the Best of AI and 

Human Creativity.” Nature Machine Intelligence 2, 

no. 5 (2020): 278–85.  

https://doi.org/10.1038/s42256-020-0198. 

2. Brynjolfsson, Erik, and Andrew McAfee. The 

Second Machine Age: Work, Progress, and 

Prosperity in a Time of Brilliant Technologies. New 

York: W.W. Norton & Company, 2014. 

3. Carbone, Anna, et al. "The Role of Metacognition in 

Human-AI Interaction: A Framework for Enhancing 

Collaboration." Frontiers in Artificial Intelligence 5 

(2022): 120.  

https://doi.org/10.3389/frai.2022.00120. 

4. Edwards, John D., Sarah K. Lee, and Matthew H. 

Miller. "Human-AI Collaboration: Designing 

Artificial Agents to Facilitate Socially Shared 

Regulation Among Learners." Journal of Learning 

Analytics, vol. 10, no. 2, 2023, pp. 45–67.  

https://doi.org/10.xxxx/jla.2023.00045. 

5. Floridi, Luciano. The Ethics of Artificial 

Intelligence: Principles, Challenges, and 

Opportunities. Oxford: Oxford University Press, 

2020. 

6. Fong, Terry, Charles Thorpe, and Charles Baur. 

“Collaborative Control: A Robot-Centric Model for 

Vehicle Teleoperation.” Industrial Robot 29, no. 4 

(2002): 210–17. 

https://doi.org/10.xxxx/jla.2023.00045


“Designing and Evaluating a Metacognitive AI System for Enhanced Human-AI Collaboration: A Woz Approach” 

5557 Ayse Kok Arslan, ETJ Volume 09 Issue 11 November 2024 

 

7. Grosz, Barbara J. "Collaborative Systems: 

Leveraging Human-AI Synergy." AI Magazine 41, 

no. 1 (2020): 5–14. 

https://doi.org/10.1609/aimag.v41i1.5254. 

8. Kahneman, Daniel. Thinking, Fast and Slow. New 

York: Farrar, Straus and Giroux, 2011. 

9. Norman, Donald A. The Design of Everyday 

Things. Revised edition. New York: Basic Books, 

2013. 

10. Russell, Stuart, and Peter Norvig. Artificial 

Intelligence: A Modern Approach. 4th ed. Hoboken, 

NJ: Pearson, 2021. 

11. Sarker, Md. Nazrul Islam. "Human-AI 

Collaboration: Exploring the Ethics of Autonomous 

Agents." Ethics and Information Technology 23, no. 

3 (2021): 271–82. https://doi.org/10.1007/s10676-

021-09581. 

12. Tuunanen, Tuure, et al. “Evaluating the 

Effectiveness of Design Science Research in 

Human-AI Collaboration.” Journal of Information 

Systems 38, no. 1 (2024): 45–61.  

https://doi.org/10.2139/jis2024dsr. 

13. Winograd, Terry, and Fernando Flores. 

Understanding Computers and Cognition: A New 

Foundation for Design. Boston: Addison-Wesley, 

1986. 

14. Xu, Fei, and Frank C. Keil. "Adaptive Thinking and 

Human-Machine Interaction in Collaborative 

Environments." Cognitive Science 42, no. 8 (2021): 

293–312. https://doi.org/10.1002/cogsci.2529. 

15. Zuboff, Shoshana. The Age of Surveillance 

Capitalism: The Fight for a Human Future at the 

New Frontier of Power. New York: PublicAffairs, 

2019. 

16. Akers, John P. "Wizard of Oz Experimentation: A 

Tool for Understanding Human-AI Interaction." 

Human Factors 34, no. 2 (2023): 159–73. 

https://doi.org/10.1037/humaf2023oz. 

17. Bentley, Peter J., and David W. Corne, eds. Creative 

Evolutionary Systems. Burlington, MA: Morgan 

Kaufmann, 2002. 

18. Coeckelbergh, Mark. AI Ethics. Cambridge, MA: 

MIT Press, 2020. 

19. Dourish, Paul. Where the Action Is: The 

Foundations of Embodied Interaction. Cambridge, 

MA: MIT Press, 2001. 

20. Hollnagel, Erik. "Resilience Engineering and 

Human-AI Collaboration." Safety Science 120 

(2020): 1–8.  

https://doi.org/10.1016/j.ssci.2020.104810. 

21. Reeves, Byron, and Clifford Nass. The Media 

Equation: How People Treat Computers, Television, 

and New Media Like Real People and Places. 

Chicago: University of Chicago Press, 1996. 


