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ABSTRACT: In addressing the challenge of suboptimal detection precision in coal mine rock foreign object detection due to 

complex environments and variable object scales, this paper proposes a coal mine rock foreign object detection algorithm based on 

YOLOv8. Initially, the incorporation of the BiFormer attention mechanism is advocated to refine the backbone network, augmenting 

the model's attention towards pivotal information regions, consequently enhancing localization and feature extraction capabilities. 

Secondly, a lightweight Content-Aware Recurrent Affine Feature Extraction (CARAFE) operator is utilized within the neck 

architecture to effectively capture and preserve intricate features at lower hierarchical levels. Finally, Wise-IoU v3 is adopted as the 

bounding box regression loss for the proposed algorithm, coupled with a prudent gradient allocation approach, thereby enhancing 

the model's localization capabilities. Empirical findings illustrate that compared to baseline algorithms, the proposed algorithm has 

fewer parameters, with an average mAP improvement of 2.5%, and a detection speed increase of 2fps/s. 
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I. INTRODUCTION 

The advancement of science and technology has shifted attention 

towards the establishment of intelligent coal mines, signifying a 

pivotal aspect of the high-quality development paradigm within 

China's coal industry in the contemporary era1,2.At present, the 

detection of foreign bodies in coal mines in China is mainly 

artificial and mechanical. In the detection of artificial coal mine, 

several challenges persist, including elevated workloads and 

suboptimal working conditions, low detection rate and harm to 

personal safety and health. In mechanical coal mine foreign body 

detection, there are problems such as environmental pollution, 

difficult maintenance of large equipment, and high investment 

cost3. Therefore, wise detection of foreign objects in coal mines 

has emerged as a focal point in contemporary research 

endeavours. 

In recent years, the rapid development of target detection 

technology, it can not only achieve the classification of the 

object, but also obtain the relevant position of the object, and 

complete the accurate detection of the location. At present, 

object detection algorithms have two major development 

processes. The first stage is to generate candidate frames, then 

obtain features through CNN, and then combine classifiers with 

boundary box regression to complete the classification and 

positioning of objects of interest, such as regional convolutional 

neural network (Region-CNN, R-CNN)4. Further developed 

algorithms include SPPNet5, FastR-CNN6, FasterR-CNN7, etc. 

Since it costs a lot of computation to generate many anchor 

frames, some scholars proposed to directly use CNN regression 

to predict candidate frames. Therefore, a series of detection 

models with low computational cost, such as YOLOv18, 

YOLO90009, YOLOv310, YOLOv411, SSD12 and CenterNet13, 

were born in the second stage of algorithm development. 

Gao Han et al.14 designed a low-level feature enhancement 

and Transformer mechanism foreign object detection algorithm 

based on Transformer model for detecting foreign matter on a 

coal mine conveyor belt. Cao Xiangang15 et al. proposed a 

detection method for coal foreign bodies based on cross-modal 

attention fusion to address the issue of insufficient feature 

extraction in image detection of foreign bodies caused by low 

contrast and mutual occlusion in raw coal flow during intelligent 

washing process. Cao Zhengyuan et al.16 proposed an advanced 

detection technique for foreign objects within coal streams, 

utilizing a dual attention generation adversarial network. This 

method aims to enhance model classification accuracy 

significantly. Tang Jun et al.17 proposed a real-time detection 

algorithm for foreign objects on belt conveyors, leveraging the 

Faster-YOLOv7 framework to enhance foreign object detection 

accuracy. Hao Shuai et al.18 introduced a target detection 

algorithm based on YOLOv5, which incorporates a convolution 

block attention model. This method addresses the challenge of 

accurately detecting images of foreign objects on conveyor belts, 

influenced by factors such as coal dust interference, high-speed 

conveyor belt movement, and uneven illumination. Du Jingyi et 

al.19 introduced an enhanced YOLOv3 model specifically 

designed for detecting foreign objects on coal mine belt 

conveyors. This improvement addresses the slower detection 

speeds observed in existing deep learning-based methods for 

foreign object detection on belt conveyors. Ren Zhiling et al.20 

proposed an improved CenterNet foreign body detection 

algorithm for coal belt to realize rapid and accurate identification 
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of foreign objects entering the coal belt during operation and 

prevent belt tearing. 

 

To sum up, the deep learning-based coal mine foreign body 

detection technology has been developed and mature, and is 

widely used in various production and transportation scenarios 

for foreign body detection, so it can be used to build a coal mine 

foreign body detection model. However, during the production 

and transportation phases in coal mining operations, the 

environment is complicated and the types of foreign bodies are 

diverse, and the defect forms of different types are greatly 

different. Hence, there is a need to investigate and enhance the 

defect detection algorithm based on machine learning methods, 

so that it can detect foreign bodies of different sizes and shapes 

in coal mine with high accuracy and fast speed, and can replace 

manual sampling inspection, which has important practical 

significance. 

II. COAL MINE FOREIGN BODY DETECTION ALGORITHM 

BASED ON IMPROVED YOLOV8 

Foreign object detection represents a significant aspect of target 

detection, employing computer vision technology to classify and 

localize foreign objects within images or video streams. 

Considering that in the actual detection process, the scales of 

different metal foreign bodies vary greatly and the background 

is very similar to that of coal mine, which affects the algorithm's 

detection efficacy, an improved YOLOv8 based coal mine 

foreign bodies detection algorithm is proposed. 

A. YOLOv8 network model 

YOLOv8 represents the most recent iteration within the YOLO 

algorithm series, offering five fundamental variants: YOLOv8n, 

YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x, depending 

on the operating environment. YOLOv8n is the fastest model 

with the smallest number of parameters, while YOLOv8x is the 

slowest but most accurate model. Compared with other 

algorithms in the YOLO family, the detection principle of 

YOLOv8 is most similar to that of YOLOv5 and YOLOv7, 

which are composed of the backbone network, the neck network 

and the first three main parts of the detection. extraction. Then 

the neck network strengthens feature fusion on the extracted 

features to obtain feature maps of three varying dimensions: 

large, medium, and small. Ultimately, the combined features are 

forwarded to the detection head for object recognition and 

localization. Test and output the final result. Fig1 illustrates the 

architecture of the YOLOv8 algorithm. 

 

Fig1. Schematic diagram of YOLOv8 algorithm structure 

 

B. Introducing the backbone network of BiFormer 

attention mechanisms 

The user discusses integrating a dynamic sparse attention 

mechanism, the BiFormer module, into the model's backbone 

network to improve detection in coal mines, where foreign 

bodies are often obscured by ore dust, making backgrounds 

similar and challenging for detection models21. BiFormer 

efficiently identifies key and value pairs with significant 

relevance, reducing computational and storage overhead while 

enhancing the model's understanding of input content. The 

network architecture is illustrated in Fig2. 

We incorporate the BiFormer dynamic sparse attention 

module into the YOLOv8 network model to improve foreign 

object detection's feature extraction capabilities. They 

highlighted the limitations of CNNs' local processing and 

discussed the Transformer's attention mechanism for global 

perception22. The BiFormer dynamic sparse attention force 

consists of BiFormer Block modules, with the BRA module as 

its core component, which filters irrelevant key-value pairs 

within the coarse feature map region using region-level directed 

graphs and fine-grained token-to-token attention during region 

association. The structures of the BiFormer Block module and 

BRA module are shown in Fig3. 
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Fig 2. Structure diagram of Biformer dynamic sparse attention module 

 

The BiFormer Block module employs a two-level routing 

approach, integrating DWConv for deep separable convolution 

to reduce model parameters and computational workload. Layer 

normalization (LN) contributes to faster training and improved 

model generalization, while the multi-layer perceptron (MLP) 

fine-tunes weights for specific areas, enhancing the model's 

attention to diverse features. 

 

 

Fig3 (a) Structure diagram of BiFormer Block module (b) Structure diagram of BRA module 

 

As depicted in Fig3-3(b), the initial feature illustration in Figure 
H W CX R    comprises two sub-regions, with each 

encompassing three feature vectors. By modifying the configuration of X , we obtain 
2

2

HW
S C

r SX R
 

 . Subsequently, the 

eigenvectors undergo a linear transformation to yield the matrices Q, K, and V. The computational formula is expressed as follows: 
r QQ X W  (1) 

r kK X W  (2) 
r VV X W  (3) 

Next, by establishing a directed graph to pinpoint relevant regions within a given area, the attentional connection between these 

regions is established. The specific implementation procedure is as follows: region-wise processing of Q and V is conducted to 

acquire the region levels 
rQ and 

2r S CK R  . Subsequently, the dot product of 
rQ  and rK  is computed to yield the adjacency 

matrix 
2 2r S SA R  , used for assessing inter-regional correlation as outlined in Eq (4): 

( )r r r TA Q K  (4) 

The route index matrix 
2r S kI N   is derived by excluding the least pertinent tokens in rA  at the coarse-grained level and 

preserving only the top rA  most pertinent regions in rA . This calculation is detailed in Eq (5): 

( )r rI topkIndex A  (5) 

Following that, fine-grained token-to-token attention is applied. When considering a query within region i, attention is restricted 

to the k routing regions specified by ( ,1) ( ,2) ( , ), , ,r r r

i i i kI I I . The process involves gathering all the Q and V tensors within these k regions 

to derive gK  and gV . The computational formula is expressed as: 

( , )g rK gather K I  (6) 
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( , )g rV gather V I  (7) 

In the final step, the gathered gK  and gV  undergo attention processing, incorporating the local context enhancer ( )LCE V  to 

produce the output tensor O . This formula is represented as Eq (8): 

( , , ) ( )g gO Attention Q K V LCE V   (8) 

We incorporated the BiFormer Block module into the 

backbone network for foreign object detection. This integration 

serves two main purposes: firstly, it considers the hardware 

platform's constraints such as limited computing power and 

storage resources during the detection process. Secondly, the 

dynamic attention mechanism within this block enhances the 

model's focus on crucial target information, thereby optimizing 

the model's detection performance. To fully leverage the 

module's efficient focus mechanism, we strategically placed 

BiFormer at the end of the backbone network to bolster the 

overall model's feature extraction capability. 

C. Lightweight CARAFE upsampling operator 

To enhance the detection capability for small and medium-sized 

foreign bodies in foreign object detection, we integrated the 

lightweight CARAFE upsampling operator23 into the original 

YOLOv8, replacing the conventional upsampling operation. The 

role of the upsampling module is to expand low-resolution 

images or feature maps into high-resolution ones, enabling better 

display on high-resolution devices or enhancing subsequent task 

performance. This module can function as an intermediate layer 

in convolution, enlarging the feature map size and aiding tensor 

concatenation. Various methods exist for upsampling, including 

nearest neighbor, bilinear, bicubic, trilinear interpolation, 

deconvolution, and transposed convolution. Upsampling 

modules are commonly used in tasks such as image 

segmentation, super resolution, and style transfer. Most 

upsampling methods involve interpolation, where new elements 

are inserted between pixel points using suitable algorithms based 

on existing image pixels. 

CARAFE, or content-aware recombination of features, is a 

lightweight general upsampling operator designed to guide the 

upsampling process based on semantic information within the 

input feature graph. Its primary approach involves creating an 

adaptive upsampled kernel via a small convolutional network. 

This kernel is then used to compute the dot product with 

corresponding adjacent pixels in the input feature map, resulting 

in the upsampled feature map. Compared to traditional nearest 

neighbor or bilinear interpolation methods, CARAFE offers a 

larger receptive field, better semantic adaptability, and 

introduces fewer parameters, thus minimally increasing 

computational costs. The CARAFE network structure comprises 

two key components illustrated in Fig4: the kernel prediction 

module, responsible for generating weights for the reorganized 

calculation kernel, and the content-aware reorganization module, 

which rearranges features based on these calculated weights. 

In Fig.4, the feature graph X with a size of C H W   is up-

sampled using CARAFE by a factor of  . At each position, 

predicted nuclei are used for recombination. Initially, the 

channel compression module reduces the channel dimension to 

mC  to streamline subsequent calculations and enable the 

utilization of a larger kernel during upsampling. Subsequently, 

based on the compressed feature map's size, a convolutional 

layer with a size of encoderk  generates the recombination kernel, 

expanding the receptive field with a larger encoderk  while 

adjusting the channel dimension to 
2 2

upk  . The resulting 

feature map is then reconstructed into a size 
2

upk H W    

feature map, followed by the application of the softmax function 

to normalize all channels at each location. 

 

' ( ( , ))l encoderl
W N X k  (9) 

' '( ( , ), )l upl l
X N X k W  (10) 

At any given position in the output 'X , there exists a 

corresponding source position ( , )l i j  in the input X , where 

'i
i



 
  
 

 and 

'j
j



 
  
 

 hold true. Consider ( , )l upN X k  as the 

up upk k  subregion of X centered at position l . The prediction 

kernel module   predicts the location kernel lX  for each 

position 'l  based on the subregions of lX , as illustrated in Eq 

(9). In Eq (10), the perceptual recombination module   

combines the subregion of lX  with the location kernel 'l
W  to 

yield 'l
X . 

The integration of CARAFE into the YOLOv8 network 

architecture enables the dynamic generation of diverse 

upsampling cores across various locations in the input feature 

map. This adaptability caters to targets of varying scales and 

shapes within different scenes. Through computing the inner 

product of the input feature map and the local domain, the 

enhanced feature map exhibits higher resolution and richer 

information, thereby improving the detection and localization 

capabilities in foreign object detection tasks. Moreover, 

compared to alternative upsampling methods like nearest 

neighbor interpolation and deconvolution, the CARAFE model 

introduces minimal parameters, boasts low computational costs, 

occupies less space, and runs faster. These attributes align with 

the real-time and high-efficiency demands of target detection 

tasks. 
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Fig 4. Schematic diagram of CARAFE network structure 

D. Loss function optimization 

In coal mine foreign object detection tasks, detecting small 

objects can pose a challenge during the detection process. A 

well-designed loss function can significantly enhance the 

model's detection performance. In object detection, the 

Intersection over Union (IoU) metric is commonly used to gauge 

the similarity between the model's predicted bounding box and 

the actual ground truth box. A higher IoU value indicates a closer 

match between the model's prediction and the ground truth label. 

During training, IoU is often incorporated into the loss function 

to aid the network in effectively learning the target detection task. 

In the context of YOLOv8, Wise-IoU serves as the bounding box 

regression loss function, aiming to improve the model's 

generalization capability and speed up convergence. Wise-IoU 

implements a dynamic non-monotonic focus mechanism for 

bounding box regression, dynamically adjusting gradient gain 

based on the bounding box's outlier value. This non-monotonic 

characteristic arises from the gradient gain's non-monotonic 

change with the loss value's gain. This dynamic mechanism 

enhances the model's ability to focus on challenging bounding 

box regression tasks, leading to improved detection performance. 

 

Fig 5. Schematic diagram of loss function parameters 
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Fig 6. Improved network structure 

 

Certainly, in the context of target detection, we can denote 

the predicted bounding box as [ , , , ]pB x y w h  and the ground 

truth bounding box as [ , , , ]gt gt gt gt gtB x y w h , as depicted in 

Fig5. 

Intersection (IoU) losses on a union are defined as follows:

 

1 1 i i

IoU

gt gt i i

w h
L IoU

wh w h w h
   

 
 (11) 

 

The limitation with IoUL  is notable: when there's no overlap 

between bounding boxes ( 0iw   or 0ih  ), the gradient 

vanishes during backpropagation. Consequently, the width of 

the overlap area iw  remains static throughout training. 

1
, 0

0, 0

i iIoU
gt gt i i

i

i

IoU
h wL

wh w h w h
w

w


  

  
  

 (12) 

 

Wise-IoU24 adopts a dynamic method to compute IoU losses 

in category prediction tasks. Its definition is as follows: 

WIoU WIoU IoUL R L  (13) 

 

Where, 
2 2

2 2

( ) ( )
exp( ) 1, )

( )

gt gt

WIoU

R R

x x y y
R e

w h

  
 


 denotes 

the distance metric, significantly amplifying the value of 

[0,1]IoUL   for a prediction bounding box of average quality. To 

circumvent gradient obstacles that impede convergence, the 

variables 
2

Rw  and 
2

Rh  are excluded from the calculation graph 

(denoted by superscript *). Furthermore, gw  and gh  signify the 

width and height of the minimum enclosing box, respectively. 

_ WIoUbox loss L  (14) 

The loss function WIoUL  incorporates two attention 

mechanisms. Within this framework, 
 




 
  signifies the 

non-monotonic focusing coefficient, 

*

[0, ]IoU

IoU

L

L
     

characterizes the anomaly degree that predicts the quality of the 

surrounding frame, and 
*

IoUL  represents the monotonic focusing 
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coefficient. Additionally, IoUL  denotes the exponential running 

average momentum m. 

The loss function WIoUL  utilizes a distance metric-based 

attention mechanism that reduces penalties for geometric 

discrepancies when there is substantial overlap between the 

predicted and actual bounding boxes. This approach minimally 

disrupts model training. As IoUL  is dynamic, the criteria for 

categorizing frame quality also adjust dynamically. This enables 

_box loss  to dynamically distribute gradient gain based on the 

current scenario. A lower degree of outliers suggests a higher 

box mass, leading to a smaller allocation of gradient gain that 

focuses boundary regression on average-mass boxes. 

E. The network structure of the improved algorithm 

Our algorithm is enhanced from YOLOv8 to improve the 

detection capability of foreign bodies in coal mines. 

Enhancements are made to the convolutional module of the 

backbone network, the upsampling module of the neck network, 

and the IoU aspect of the head. These improvements 

significantly boosted the network's detection performance. Fig6 

depicts the enhanced network structure. 

To boost feature extraction and optimize the detection of 

foreign bodies, BiFormer is integrated into the backbone 

network's end. The neck network utilizes CARAFE for up-

sampling, enhancing detailed feature and structural retention for 

improved quality and accuracy. Furthermore, Wise-IoU is 

adopted as YOLOv8's bounding box regression loss in the 

detection head's loss function, accelerating convergence and 

enhancing model generalization. 

III. EXPERIMENTAL PART 

 

In this paper, experiments are carried out on the coal mine 

foreign body dataset constructed by ourselves to prove the 

effectiveness of the improved coal mine foreign body detection 

algorithm based on YOLOv8. 

A. Evaluation index and parameter setting 

To comprehensively assess the foreign body detection's 

recognition efficacy, four standard evaluation metrics in target 

detection are chosen: average accuracy (AP), average average 

accuracy (mAP), reference number Params, floating-point 

operation FLOPs, and detection frames per second (FPS). The 

experiments are conducted in the environment detailed in Table 

1, with specific training hyperparameters outlined in Table 2. 

 

TABLE 1. EXPERIMENTAL ENVIRONMENT 

Experimental 

configuration 
Version parameter 

Operating system Windows10 

Video memory 11GB 

CPU Intel(R) Core (TM) i9-9900KF 

GPU 
NVIDIA GeForce RTX 2080 

Ti 

CUDA 10.1 

Python version Python3.7 

The entire training process incorporates a learning rate decay 

method, where the initial learning rate regulates how fast model 

parameters are updated, and the coefficient of the initial learning 

rate controls the rate of decay during training to achieve the final 

learning rate. The final learning rate is determined by 

multiplying the initial learning rate coefficients. To ensure 

training stability, a total of 200 epochs are completed, gradually 

reducing the learning rate throughout training. This approach 

facilitates smooth model convergence to the optimal solution 

and prevents abrupt fluctuations. 

 

TABLE 2. MODEL TRAINING HYPERPARAMETER SETTINGS 

Hyperparameter Parameter setting 

Input picture size 640×640 

Batch size 8.0 

NMS IoU 0.75 

Initial learning rate 0.01 

Final learning rate 0.0001 

Optimizer SGD 

Momentum parameter 0.937 

Training cycle 200 
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B. Ablation experiment 

During the ablation experiment, we meticulously assessed each 

module's function, with the experimental outcomes detailed in 

Table 3. BiFormer, CARAFE, and WIoU modules are 

individually integrated into the original YOLOv8, while the 

original algorithm serves as the control group. Table 3 outlines 

the specific experimental setup and test results. Model 1 

represents the base YOLOv8 algorithm, model 8 stands for the 

enhanced algorithm proposed in this study, and models 2-7 

correspond to comparative algorithms from the ablation 

experiment. The presence of "√" in the table signifies the 

module's inclusion, whereas an empty space indicates its 

exclusion. 

Based on Table 3, the BiFormer Block module is integrated 

into the backbone network of Model 2, replacing the C2f module 

in the original setup. The efficient attention mechanism within 

BiFormer enhances attention towards crucial areas in the feature 

mAP, resulting in a 1.6% increase in mAP. The BiFormer 

module's structure is relatively straightforward. It reduces the 

model's parameter count by 0.4 million, increases floating-point 

computations by 1.3 billion, and decreases detection speed by 

0.8 frames per second. Table 4 illustrates the experimental 

outcomes of various attention modules in YOLOv8, 

demonstrating that among CBAM, SE, ECA, CA, and BiFormer, 

the BiFormer module exhibits the most effective performance in 

YOLOv8. 

In Model 3, the lightweight CARAFE upsampling operator 

is integrated into the enhanced feature extraction process of the 

neck network, replacing the nearest neighbor interpolation 

method used in the original setup. The utilization of CARAFE 

upsampling boosts the mAP by 0.6%, increases the parameter 

count by 0.2 million, and improves detection speed by 0.4 

frames per second. Table 5 presents the impact of different 

upsampling methods on network detection outcomes, clearly 

demonstrating that the CARAFE upsampling operator delivers 

the best performance in YOLOv8. 

In Model 4, the WIoUv3 loss function is introduced into the 

prediction box regression loss, which enhances the 

generalization ability of the model and speeds up the 

convergence rate. The mAP of the model is improved by 1.1%, 

and the detection speed is improved by 1.1 frames per second. 

Table 6 shows the detection results of YOLOv8 algorithm under 

different loss functions, and WIoUv3 loss function has the best 

performance. 

 

TABLE 3. RESULTS OF ABLATION EXPERIMENT 

Model BiFormer CARAFE WIoU mAP/% Params/M GFLOPs FPS 

1    95.2 11.1 28.8 15.4 

2 √   96.8 10.7 28.6 14.6 

3  √  95.8 11.3 30.3 15.8 

4   √ 96.3 11.1 30.3 16.5 

5 √ √  97.5 11.2 32.5 15.3 

6 √  √ 97.3 10.7 29.8 15.8 

7  √ √ 97.2 11.3 30.3 18.2 

8 √ √ √ 97.7 10.9 32.5 17.4 

 

TABLE 4. RESULTS OF DIFFERENT ATTENTION EXPERIMENTS 

Attention mechanism mAP Params/M GFLOPs FPS 

CBAM 95.6 11.3 107.5 15.3 

SE 95.8 11.2 107.4 16.5 

ECA 96.1 11.1 107.3 17.6 

CA 96.4 11.2 108.2 16.2 

BiFormer 96.8 10.7 108.6 14.6 

 

TABLE 5. EXPERIMENTAL RESULTS OF DIFFERENT UPSAMPLING OPERATORS 

Upsampling operator mAP Params GFLOPs FPS 

Bilinear interpolation 94.8 11.1 28.6 15.6 

Nearest neighbor 

interpolation 
95.2 11.1 28.8 15.4 

Trilinear interpolation 95.3 11.2 29.3 15.1 

CARAFE 95.8 11.3 28.5 15.8 
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TABLE 6. EXPERIMENTAL RESULTS OF DIFFERENT LOSS FUNCTIONS 

Loss function mAP Params GFLOPs FPS 

CIoU 95.2 11.1 28.8 15.4 

DIoU 95.4 11.1 28.8 15.6 

GIoU 95.7 11.1 28.8 15.1 

EIoU 95.8 11.0 28.6 15.0 

SIoU 96.0 11.1 28.8 16.2 

WIoU 96.3 11.1 28.9 16.5 

 

Based on BiFormer, several enhancements are made in 

different YOLOv8 models: 

1.Model 5: Integrates the lightweight CARAFE upsampling 

operator, improving performance on high-resolution input data 

while controlling model complexity and computational costs. 

2.Model 6: Introduces the WIoU loss function based on 

BiFormer, enhancing the model's ability to handle IoU-sensitive 

tasks more effectively. 

3.Model 7: Combines the lightweight CARAFE operator 

with the WIoU loss function. During training, the WIoU loss 

guides the model to generate accurate predictions, while the 

CARAFE upsampling operator maintains spatial detail and 

accuracy in prediction results. 

In the comparison of ablation experiments, Model 8 in 

YOLOv8 stands out for achieving a balanced improvement 

across detection performance, parameter count, and detection 

speed. With the addition of various improved modules, its mAP 

surged to 97.7%. Notably, the model effectively reduced the 

number of parameters while enhancing detection speed, ensuring 

faster and accurate detection capabilities. 

C. Contrast experiment 

Fig6 shows the change curves of some important evaluation 

indicators in the training process of our proposed algorithm. 

Through these curves, we can intuitively gain insight into the 

training progress and performance changes of the model. In the 

early stages of training, the mAP curve rose sharply, showing 

the model's ability to quickly learn and improve detection 

performance when exposed to new data. However, after the 30th 

round of training, the curve became relatively stable, indicating 

that the performance improvement speed of the model began to 

slow down and gradually became stable. On the whole, the 

model has shown good training performance and fitting state.

 

 

Fig 7. Change curve of evaluation index in the training process of improved algorithm 
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(a) YOLOv8     (b) Ours 

Fig 8.P-R curve of the algorithm before and after improvement 

 

To comprehensively assess the algorithm's detection 

performance improvements in this study, we've plotted the P-R 

curve, showcasing accuracy across various recall rates. The area 

under this curve quantifies the algorithm's enhanced 

performance. Fig8 illustrates that the improved algorithm 

achieves higher average detection accuracy across different 

recall rates, indicating enhanced detection capabilities. 

Additionally, Fig9 depicts the normalized confusion matrix for 

foreign body detection categories, with rows and columns 

representing actual and predicted categories, respectively. 

Diagonal values indicate the predicted percentage for each 

category. This comparison reveals that our enhanced detection 

algorithm significantly improves average detection accuracy, 

particularly for steel bars, angle iron, and pipes

.

TABLE 7.EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS 

Model Input size mAP Params GFLOPs FPS 

SSD 600×600 92.8 26.3 62.8 54.4 

YOLOv3 640×640 89.0 61.5 155.3 32.7 

YOLOv4 640×640 83.9 52.5 119.8 44.3 

YOLOv5 640×640 93.4 7.3 16.1 42.6 

YOLOX 640×640 95.0 9.06 26.8 48.4 

YOLOv7 640×640 89.4 7.1 15.8 22.6 

YOLOv8 640×640 95.2 11.1 28.8 15.4 

Ours 640×640 97.7 10.9 32.5 17.4 

 

(a) YOLOv8      (b) Ours 

Fig 9. Confusion matrix of the algorithm before and after improvement 
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Fig10 . Detection results of the algorithm in this paper 

The user compared the improved algorithm model with 

classical target detection models like SSD, YOLOv3, YOLOv4, 

YOLOv5, YOLOX, YOLOv7, and YOLOv8, maintaining 

consistent training hyperparameters and strategies. The results in 

Table 7 demonstrate that the proposed algorithm surpasses other 

models in detection accuracy. SSD, YOLOv3, and YOLOv4 

have overly large model weights, parameter counts, and 

GFLOPs, hindering full deployment. YOLOv5, YOLOX, and 

YOLOv7 have comparable parameter counts and GFLOPs but 

lower detection accuracy than YOLOv8 and the improved 

algorithm. Specifically, the proposed algorithm's mAP exceeds 

YOLOv5, YOLOX, YOLOv7, and YOLOv8 by 4.3%, 2.7%, 

8.3%, and 2.5%, respectively. 

Fig10 displays randomly chosen images from our test set 

containing five types of metal foreign objects: steel bars, pipes, 

columns, angle irons, and small miscellaneous metal foreign 

objects, along with the detection outcomes using the algorithm 

described in this paper. The figure illustrates that our algorithm 

effectively detects and accurately identifies foreign objects. 

 

IV. CONCLUSIONS 

In this paper, we present an enhanced algorithm based on 

YOLOv8 to address issues related to low detection accuracy and 

imprecise object positioning in coal mine foreign object 

recognition tasks. The approach incorporates BiFormer dynamic 

sparse attention into the backbone network to enhance feature 

characterization. Additionally, it utilizes the CARAFE 

lightweight upsampling operator for more detailed feature 

retention during upsampling, thereby improving upsampling 

quality and accuracy. The detection head of the network is 

enhanced by incorporating IoU prediction and using Wise-IoU 

as the bounding box regression loss function in YOLOv8, 

enhancing model generalization and accelerating convergence. 

Experimental validation is conducted on a custom coal mine 

foreign object dataset, comparing objective evaluation metrics 

and visual results with mainstream general target detection 

methods. The experimental findings demonstrate superior 

detection performance and efficacy of the enhanced method 

compared to other object detection approaches. 

 

REFERENCES 

1. Guofa W, Feng L, Yihui P, Ren. (2019). Coal mine 

intelligence: Core technical support for high-quality 

development of the coal industry. Journal of China Coal 

Society, 44(2), 349-357. 

2. Guofa W. (2022). Latest Technological Advanceme-nts an

d Issues in Coal Mine Intelligence. Coal Scien-ce & Techn

ology (0253-2336), 50(1). 

3. Xiangang C, Siyin L, Peng W. (2022). Research on Coal 

Gangue Recognition and Localization System for Coal 

Gangue Sorting Robots. Coal Science & Technology (0253-

2336), 50(1). 

4. Zhang N, Donahue J, Girshick R, et al. Part-Based R-CNN

s for Fine-Grained Category Detection[J]. Lect-ure Notes i

n Computer Science, 2014,8689(1):834-849. 

5. He K, Zhang X, Ren S, et al. Spatial Pyramid Pooling in 

Deep Convolutional Networks for Visual Recognition[J]. 



“Algorithm For Coal Mine Rock Foreign Object Detection Based on Enhanced Yolov8” 

3802 Shuai Yang, ETJ Volume 09 Issue 04 April 2024 

 

IEEE Transactions on Pattern Analysis & Machine 

Intelligence, 2014,37(9):1904-1916. 

6. Girshick R. Fast R-CNN[C]. IEEE International Conference 

on Computer Vision. Santiago, Chile, 2015. 

7. Ren S, He K, Girshick R, et al. Faster R-CNN: Towards 

Real-Time Object Detection with Region Proposal 

Networks[J]. IEEE Transactions on Pattern Analysis & 

Machine Intelligence, 2017,39(6):1137-1149. 

8. Redmon J, Divvala S, Girshick R, et al. You Only Look 

Once: Unified, Real-Time Object Detection[C]. IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 

Las Vegas, NV, USA. 2016:779-788. 

9. Redmon J, Farhadi A. YOLO9000: Better, Faster, 

Stronger[C]. IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, Honolulu, HI, USA, 2017:6517-

6525. 

10. Redmon J, Farhadi A. YOLOv3: An Incremental 

Improvement[C]. IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, Salt Lake City, UT, USA, 

2018. 

11. Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: 

Optimal Speed and Accuracy of Object Detection[C]. 

IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, USA, 2020. 

12. LIU W, ANGUELOV D, D E, et al. SSD: Single Shot 

MultiBox Detector[J]. European Conference on Computer 

vision, 2016:21-37. 

13. Duan K, Bai S, Xie L, et al. CenterNet: Keypoint Triplets 

for Object Detection. arXiv,2019. 

14. Han G, Peipei Z, Zheng Y. (Year). Coal Mine Conveyor 

Belt Foreign Object Detection Based on Feature 

Enhancement and Transformer. Coal Science & 

Technology, 1-11. 

15. Xiangang C, Hu L, Peng W. (2024). Coal Foreign O-bject 

Detection Method Based on Cross-Modal Atte-ntion Fusio

n. Industrial and Mining Automation (01), 57-65. doi:10.13

272/j.issn.1671-251x.2023110035. 

16. Zhengyuan C, Wei J, & Chenghui F. (2023). Intelligent 

Detection Method for Coal Flow Foreign Objects Based on 

Dual Attention Generative Adversarial Networks. Industrial 

and Mining Automation (12), 56-62. 

doi:10.13272/j.issn.1671-251x.18094. 

17. Jun T, Jingzhao L, Qing S. (2023). Real-time Detecti-on of

 Foreign Objects on Belt Conveyor Based on F-aster-YOL

Ov7. Industrial and Mining Automation (11), 46-52+66. do

i:10.13272/j.issn.1671-251x.2023020037. 

18. Shuai H, Xu Z, Xu M (2022). Foreign Object Detection on 

Coal Mine Conveyor Belt Based on CBAM-YOLOv5. 

Journal of China Coal Society (11), 4147-4156. 

doi:10.13225/j.cnki.jccs.2021.1644. 

19. Jingyi D, Rui C, Le H. Foreign Object Detection on Coal 

Mine Belt Conveyor. Industrial and Mining Automation 

(08), 77-83. doi:10.13272/j.issn.1671-251x.2021040026. 

20. Zhiling R & Yancun Z. (2023). Research on Foreign Objec

t Recognition in Coal Mine Belt Transportatio-n Based on 

Improved CenterNet Algorithm. Contro-l Engineering (04)

, 703-711. doi:10.14107/j.cnki.kzgc.20200792. 

21. Zhu, L., Wang, X., Ke, Z., Zhang, W., & Lau, R. W. (2023). 

Biformer: Vision transformer with bi-level routing 

attention. In Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition (pp. 10323-10333). 

22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 

L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is 

all you need. Advances in neural information processing 

systems, 30. 

23. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C. C., & Lin, D. 

(2019). Carafe: Content-aware reassembly of features. In 

Proceedings of the IEEE/CVF international conference on 

computer vision (pp. 3007-3016). 

24. Tong, Z., Chen, Y., Xu, Z., & Yu, R. (2023). Wise-I-oU: b

ounding box regression loss with dynamic foc-using mecha

nism. arXiv preprint arXiv:2301.10051. 

 


