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ABSTRACT: To address the issues of lacking long-range spatial position learning ability and excessive loss of fine-grained feature 

information during spatial feature pooling in human pose estimation models, a novel human pose estimation model based on the 

Yolopose network is proposed. Firstly, an enhanced coordinate attention module is introduced and embedded into the backbone 

network to endow the model with long-range spatial position modeling capability. Secondly, a fine-grained cascaded spatial pyramid 

pooling module is proposed to mitigate the loss of fine-grained feature information caused by spatial feature pooling. Finally, an 

implicit knowledge learning module is incorporated to reduce the model parameter count and enhance the model's capability for 

multi-task joint optimization. 
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I. INTRODUCTION 

Human pose estimation networks predict keypoint 

coordinates of human body joints and connect them in a 

predetermined order to form a skeletal representation of 

human posture 1. Human pose estimation is considered a 

critical technology for understanding human behaviour 2 in 

images and videos, providing important technical foundations 

for downstream applications such as action recognition 3, 

motion capture 4, virtual reality 5, augmented reality 6, and 

video surveillance 7. 

The research on human pose estimation can be divided 

into two stages: traditional methods based on handcrafted 

features and deep learning-based methods. Traditional 

methods heavily rely on handcrafted feature extraction to 

build human body models. For instance, an iterative parsing 

method for pose estimation was proposed by Ramanan et al 

8., starting with edge-based detectors to obtain initial parsing 

and iteratively constructing better features. Structured models 

were utilized by Sapp et al 9. to extract body edge contours 

and shape features. An appearance model based on the fusion 

of HOG and color features for pose estimation was proposed 

by Han et al 10. Additionally, a pose estimation method based 

on connection and symmetry relationships was proposed by 

Shi et al 11. However, traditional methods often face 

limitations in capturing the diversity and complexity of 

human poses due to the limited feature representation 

capability and poor robustness of handcrafted features. 

In recent years, with the rapid development of computer 

vision technology, various deep learning-based pose 

estimation algorithms have emerged to overcome the 

limitations of traditional methods. After applying deep 

learning methods to human pose estimation tasks, the 

performance of models has been greatly improved. These 

models can be categorized into two paradigms: top-down and 

bottom-up. Top-down methods estimate human poses in two 

stages: first, the input image undergoes object detection to 

obtain human bounding boxes, and then each bounding box 

is cropped from the original image to form a single-person 

image. Subsequently, the cropped images are fed into single-

person pose estimation models to obtain predicted human 

poses, which are then projected back to the original image to 

obtain the final multi-person pose estimation results. Top-

down methods generally maintain high accuracy in human 

pose estimation but have a linear increase in computational 

time with the number of people in the image. For example, a 

module called Hourglass was proposed by Newell et al 12., 

consisting of a multi-scale, symmetric up-sampling and 

down-sampling path, which gradually improves the accuracy 

of pose estimation by stacking multiple Hourglass modules. 

Chen et al 13. designed a network called CPN, which is 

divided into GlobalNet and RefineNet parts. GlobalNet 

directly predicts keypoints for easy-to-detect body parts, and 

RefineNet then corrects the predictions and refines keypoints 

for some challenging body parts. An integral regression 

method was proposed by Sun et al 14. to perform end-to-end 

training for human pose estimation by linking heatmap 

representation with joint regression. In contrast to top-down 

methods, bottom-up methods directly detect all keypoints in 

the image and then cluster the detected keypoints to generate 

posture information for each person. For example, the 

Openpose network was proposed by Cao et al 15., which 

extracts features from images and sends them into two 

branches: one branch predicts the confidence heatmap for 

each body part, and the other branch learns the affinity field 
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of each body part to associate body parts with human 

instances in the image. Finally, the information from the two 

branches is fused to obtain the human poses for all individuals 

in the image. Geng et al 16. used adaptive convolution to 

activate pixel regions of keypoints and learned corresponding 

adaptive convolution representations through multiple 

branches for keypoint regression. 

Existing top-down two-stage methods and bottom-up 

methods are not considered optimal because top-down 

methods require complex multi-model coordination to 

transform multi-person pose estimation into a single-person 

pose estimation problem. Additionally, bottom-up methods 

require cumbersome heatmap post-processing steps and 

cannot undergo end-to-end training because such heatmap 

post-processing operations are non-differentiable. A novel 

heatmap-free joint detection method called Yolopose was 

proposed by Maji et al 17., which is designed based on the 

popular Yolo 18 object detection framework for human pose 

estimation. The network first extracts image features from the 

input image through the Darknet-csp backbone network. 

Subsequently, the feature map is fed into the PANet feature 

fusion network for feature fusion operations, and the output 

is then sent to the detection heads of the network for 

prediction. Finally, the network outputs corresponding 

human bounding boxes and human pose keypoint information 

through two different branches of detection heads. Unlike 

top-down methods, Yolopose replaces multiple forward 

passes and can jointly detect the bounding boxes of multiple 

people and their corresponding human keypoint poses in one 

forward pass. Moreover, the Yolopose model does not require 

post-processing of detected keypoints like bottom-up 

methods because each bounding box has a corresponding 

associated human pose, resulting in inherent keypoint 

grouping. The Yolopose model effectively avoids the 

drawbacks of both top-down and bottom-up methods and is 

therefore selected as the baseline model for this study. 

While the Yolopose human pose estimation model has 

achieved certain effectiveness in estimating human poses, it 

still faces issues such as excessive loss of fine-grained feature 

information during spatial feature pooling, lack of long-range 

spatial position learning capability, and insufficient 

optimization of multi-task loss functions. To address these 

problems, improvements will be made in the following 

aspects, proposing a Long Range Fine Grained Yolopose 

(LRFG-Yolopose) human pose estimation network: 

(1) Improvements will be made to the backbone network 

by integrating coordinate attention. An enhanced coordinate 

attention module will be proposed and embedded into the 

original backbone network, enabling the network to learn 

long-range spatial positions during feature extraction. This 

enhancement will strengthen the network's long-range 

perception and expression capabilities, providing the network 

with a global perspective and better attention to the relative 

positional relationships between key points of the human 

anatomy. 

(2) An improved fine-grained cascaded spatial pyramid 

pooling module will be proposed to enhance the feature 

learning capability of the original model's spatial pyramid 

pooling module. This enhancement aims to reduce the loss of 

fine-grained feature information during the pooling process 

and improve the prediction performance of the network in 

complex multi-person scenes. 

(3) Combining implicit and explicit knowledge in the 

network to improve the joint optimization learning capability 

of multi-task loss functions, reducing the network's parameter 

count and enhancing the overall prediction performance of 

the network. 

These improvements will collectively contribute to the 

advancement of the LRFG-Yolopose human pose estimation 

network, addressing existing limitations and enhancing its 

effectiveness in estimating human pose. 

 

II. LRFG-YOLOPOSE HUMAN POSE ESTIMATION 

NETWORK 

In response to the issues identified in the original 

Yolopose human pose estimation network, research has been 

conducted to improve it, resulting in the LRFG-Yolopose 

network structure as depicted in Figure 1. The input image is 

first fed into the SCADK-Net backbone network for feature 

extraction, obtaining feature information at different levels of 

the image. Subsequently, the extracted feature information is 

input into the PANet feature fusion network for bottom-up 

and top-down feature alignment fusion operations. Finally, 

the embedded implicit information detection head conducts 

refined predictions. Then, through two different task 

prediction heads (Box Keypoint), the network outputs 

information regarding person detection boxes and human 

body pose key points, thereby completing the task of 

detecting human key points with long-range fine-grained 

modelling. 

 
Figure 1: Diagram of LRFG-Yolopose Network Structure 

 

 

 



“Research on Human Pose Estimation Model Based on Long-Range Fine-Grained Modeling” 

3817 Ziyang Lin1, ETJ Volume 9 Issue 04 April 2024 

 

A. Strengthen Coordinate Attention Module 

The Yolopose network model typically focuses only on 

local information of the image while neglecting global 

contextual information during image feature extraction. The 

limited local receptive field of convolutional operations 

restricts the model's ability to learn long-range dependencies. 

Additionally, the translational invariance of convolutional 

operations prevents the network from capturing spatial 

positional information, significantly constraining the 

performance of the model in human pose estimation. To 

address this issue, improvements are made to the network 

using a coordinate attention mechanism, enabling the network 

to possess the capability of long-range spatial position 

modeling. Human pose estimation tasks require the utilization 

of visual cues and anatomical relationships to locate 

keypoints, and long-range spatial position modeling enables 

the network to have a larger receptive field, assisting the 

network in more accurately locating human keypoints within 

different distance ranges. 

Currently, with the continuous emergence of various 

attention networks 19, representative networks include 

Squeeze-and-Excitation Networks (SENet) 20 and 

Convolutional Block Attention Module (CBAM) 21. 

However, most attention modules typically only focus on 

channel information of feature maps, neglecting the spatial 

coordinate information of feature maps. For fine-grained 

keypoint detection tasks such as human pose estimation, this 

structure inevitably leads to performance degradation. Hou et 

al. 22 proposed a coordinate attention mechanism, which can 

capture directionally relevant spatial positional information 

while focusing on channel information. This mechanism 

assists the model in better identifying and locating targets. 

Inspired by the coordinate attention mechanism, a 

strengthen coordinate attention module (SCA) is proposed to 

improve the backbone network of the model. As shown in 

Figure 2, the coordinate attention is integrated with the C3 

structure and embedded into the original backbone network 

Darknet-csp-d53s by replacing the last two C3 modules. This 

modification enables the SCA module to have a global 

perspective during feature extraction, thereby transforming 

the original backbone network into the SCADK-Net 

backbone network with stronger feature extraction and 

representation capabilities. Consequently, it effectively 

focuses on and extracts highly nonlinear pixel semantic 

information and better attends to the anatomical relationships 

between different keypoints of the human body from a global 

perspective. Ultimately, this facilitates the accomplishment 

of high-quality fine-grained human pose estimation tasks. 

 
Figure 2: Strengthen Coordinate Attention Module 

The strengthen coordinate attention module decomposes 

the global pooling according to Equation (1), improving the 

global pooling into a set of one-dimensional vector encoding 

operations in both horizontal and vertical directions. 
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The network captures relevant features from different 

directions using the aforementioned method, obtaining 

feature maps informative about the respective directions. 

Compared to the compression method of global pooling, this 

approach allows the attention module to acquire long-range 

relationships in a single direction while preserving spatial 

information extracted in the other direction. 

After obtaining a global receptive field in this manner 

and accurately encoding positional information, it is 

necessary to concatenate the two transformations and further 

transform them through a 1×1 convolution function F1 to fully 

utilize the representation information generated thereby. The 

computational process is illustrated in Equation (3). 

   1 ,  h wf F z z      (3) 

In the above equation, ,h wz z    represents the 

concatenation operation along the spatial dimension,   

denotes the nonlinear activation function, and f  represents 

the intermediate feature maps that encode spatial information 

in the horizontal and vertical directions. Subsequently, f  is 

split into two independent tensors, h K Hf R   and 

w K Wf R  , along the spatial dimension, with an appropriate 

reduction ratio   chosen to adjust the number of channels of 

f , thereby controlling the model's complexity and parameter 

count. Following this, two additional 1×1 convolution 

transformations, Fh and Fw, are employed to transform fh and 

fw into tensors with the same number of channels. These 

tensors are then combined with the input X through residual 

connections and summation, resulting in gh and gw. The 

computational process is illustrated in Equations (4). 
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Wherein,   represents the sigmoid activation function, 

followed by expanding the outputs hg  and wg , which serve 
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as attention weights. Finally, the calculation process of the 

coordinate attention output is illustrated in Equation (5): 

        , ,  h w
k k k ky i j x i j g i g j    (5) 

The SCADK-Net backbone network, embedded with the 

enhanced coordinate attention module, enables the 

assignment of varying weights to different types of 

information in the image, allowing the model to focus on 

more crucial features. This breakthrough surpasses the local 

operation constraints of the original network and models 

global information, enabling the model to attend to a broader 

field of view. This enhancement assists the Yolopose network 

in better learning the contextual relationships between human 

body joint positions, discerning the relative positions and 

angles between body joints, and modeling dependencies 

among distant joints. Consequently, this facilitates improved 

detection of spatial positions of human body keypoints and 

enhances the performance of the human pose estimation 

network. 

B. Fine-Grained Cascaded Spatial Pyramid Pooling 

Module 

The shallow features extracted by the human pose 

estimation network model primarily consist of feature maps 

containing local edge and texture information from the image, 

while the deeper features comprise more abstract global 

semantic information feature maps. The Yolopose model 

employs a Spatial Pyramid Pooling (SPP) module to acquire 

feature information at multiple resolutions. During the 

process of multiscale spatial feature pooling, a significant 

amount of valuable information is lost from the feature maps, 

resulting in varying degrees of human body keypoint 

omission and ultimately impacting the accuracy of the human 

pose estimation. 

 
Figure 3: Spatial Pyramid Pooling Module 

 

As illustrated in Figure 3, the input to the Spatial 

Pyramid Pooling module first undergoes pooling operations 

with three parallel pooling kernels of size 3 and stride 1. 

Subsequently, the outputs of the three pooling operations are 

concatenated together to produce the final pooled result. The 

Spatial Pyramid Pooling module merges feature maps at 

different resolutions through maximum value pooling, 

thereby distinguishing high-frequency edge contour 

information from low-frequency background information in 

the image. 

Due to the adoption of three parallel 3×3 pooling kernels 

in the original model's Spatial Pyramid Pooling module, it 

suffers from small receptive fields and low computational 

efficiency. Moreover, the pooling process inevitably leads to 

the loss of a significant amount of fine-grained feature 

information, resulting in varying degrees of person omission 

issues in the human pose estimation task within complex 

multi-person scenarios. To address this challenge, a Fine-

Grained Cascaded Spatial Pyramid Pooling (FGCSPP) 

module is proposed. 

 
Figure 4: Fine-Grained Cascaded Spatial Pyramid 

Pooling Module 

 

As depicted in Figure 4, the module comprises two 

branches: a Spatial Pyramid Pooling operation branch and a 

residual branch. The residual branch consists solely of a 

convolution with a kernel size of 1 and stride of 1. Meanwhile, 

the Spatial Pyramid Pooling branch involves three 

convolutions with kernel sizes of 1, 3, and 1, respectively, 

replacing the original 3×3 pooling kernel with a 5×5 kernel to 

enhance the module's receptive field. A larger receptive field 

allows the network to focus on a wider range of human feature 

information in a single learning process, thereby improving 

the prediction of human keypoint positions. Following the 

Spatial Pyramid Pooling operation, two convolutions with 

kernel sizes of 1 and 3, both with a stride of 1, are applied. 

Subsequently, the outputs of the pooling branch and the 

residual branch are concatenated, followed by a convolution 

operation to adjust the number of feature map channels, 

serving as the final output of the module. Due to the inclusion 

of additional convolution operations in this process, the 

modified module incurs a slight increase in parameter count 

compared to the original module. To address concerns 

regarding the computational efficiency of the module post-

parameter increase, the original module's three parallel 

structure of pooling kernels is replaced with a cascaded 

structure to enhance network efficiency. 

The fine-grained cascaded spatial pyramid pooling 

module, relative to the original spatial pyramid pooling 

module, not only enhances feature extraction capability but 

also mitigates the issue of fine-grained feature information 

loss during the pooling process. It consolidates local and 

global information from feature maps at different resolutions 

into each feature map, enriching the human feature 

information contained within individual feature maps. 

Ultimately, this enhancement leads to higher performance in 

human pose prediction for the network. 
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C. Implicit Knowledge Module 

The Yolopose network model extracts and learns 

explicit features solely from neurons, neglecting the rich 

implicit knowledge 23 within the network. Implicit 

knowledge is equally crucial for the training and learning 

process of the network and plays an indispensable role in the 

predictive performance of the model. Explicit knowledge 

refers to directly observable knowledge, while implicit 

knowledge encompasses information hidden within the 

neural network that cannot be directly observed. 

When training a model like Yolopose that is shared 

among multiple tasks (such as object detection and human 

pose estimation), the lack of alignment in the feature space 

during the feature fusion stage is a common occurrence. 

Additionally, the joint optimization of multi-task loss 

functions often leads to mutual interference among various 

aspects, resulting in a decrease in overall network 

performance. To address such issues, implicit knowledge is 

introduced into the training process of the network to enhance 

the prediction effectiveness of multiple tasks. As depicted in 

Figure 3-7, the implicit knowledge module is first embedded 

into the PANet feature fusion network of the Yolopose model 

to fuse output features and implicit representations. By 

transforming, rotating, and scaling the feature space, each 

output feature space of the neural network is aligned, 

combined with Ghost convolution 24 (where Ghost 

convolution decomposes ordinary convolution into two steps: 

first, it utilizes ordinary convolution to generate a small 

number of feature maps with a smaller computational cost, 

then it generates new feature maps based on these feature 

maps through inexpensive operations, and finally 

concatenates these two sets of feature maps to obtain the final 

output) replacing ordinary convolution in PANet to reduce 

network parameter count. Simultaneously, the network 

undergoes joint optimization of multi-task loss functions to 

mitigate the negative impacts of the original network's joint 

optimization process, thereby enhancing the network's final 

predictive performance. 

The calculation process of the objective loss function for 

multi-task joint training optimization is depicted as shown in 

Equation (6). 

    y f x    (6) 

Where x  represents the observed values,   denotes the 

set of network parameters, f  signifies the operations of the 

neural network,   stands for the error term, and y  

represents the predicted targets for the given multi-task 

function. The training objective of the network model is to 

minimize the multi-task joint loss function  f x , which 

requires aligning the features obtained from f  for each task 

of the same network model, thereby ensuring that the spatial 

features obtained are highly discriminative only for the 

current task it , while remaining unchanged for all other 

potential tasks T except it , where  1 2, , , nT t t t . 

The combination of implicit and explicit knowledge is 

used to model the error term for training the multi-task 

network, as illustrated in Equation (7). 

       ,  ex imy f x g x z       (7) 

Where ex  and im  respectively model the explicit error 

from the observed quantity x  and the implicit error from the 

implicit encoding z . g  represents the multi-task 

information filtering operation, used to select and combine 

information from both explicit and implicit knowledge. 

Typically, the explicit knowledge has been integrated into 

 f x , thus the above computation process is consolidated 

into Equation (8), where   denotes the fusion operation. 

      y f x g z    (8) 

For all tasks, the computation begins with a shared 

explicit knowledge operation  f x , followed by task-

specific implicit knowledge operations  g z . Subsequently, 

task-specific discriminators are employed to accomplish the 

respective tasks, introducing enhanced representation 

capabilities through implicit representations for each task 

branch, ultimately enhancing the prediction accuracy of the 

network. 

 

III.  EXPERIMENT 

A. Experimental Setup 

The experimental setup utilized an Intel(R) Xeon(R) 

Gold 6348 CPU, along with two NVIDIA GeForce RTX 3080 

Ti GPUs. The operating system employed was Windows 10 

Professional Workstation Edition. PyTorch, a deep learning 

framework, was utilized for experimentation, with 

programming conducted in Python, leveraging CUDA and 

cuDNN libraries. The optimization process involved the 

Stochastic Gradient Descent (SGD) optimizer coupled with 

the Cosine Annealing learning rate strategy. Data 

augmentation techniques included random scaling in the 

range of [0.5, 1.5], random translation scale in the range of [-

10, 10], random flipping with a probability of 0.5, mosaic 

augmentation with a probability of 1, as well as various color 

augmentations. The model underwent 80 rounds of training. 

B. Datasets and Evaluation Indicators 

The experiments in this paper were conducted on the 

Microsoft Common Objects in Context (MS-COCO) dataset 

25 for training and validation. The MS-COCO dataset is a 

large-scale dataset created by Microsoft for research tasks 

such as object detection, image segmentation, and keypoint 

detection. It comprises 200,000 images and 250,000 

annotated instances with 17 key points for each person. The 

dataset encompasses diverse environmental settings and 

varying body proportions, providing a comprehensive 

representation of real-life scenarios. 

The experiments followed common evaluation standards, 

utilizing metrics based on Object Keypoint Similarity (OKS) 

for human keypoint estimation on the MS-COCO dataset. 
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The evaluation metric of the MS-COCO dataset is the 

Average Precision (AP) based on the OKS, which assesses 

the similarity between predicted human keypoints and their 

corresponding ground truth values. The specific calculation 

method is as follows: 

 

   

 

2 2 2exp 2 0

 
0

i i i

i

i

i

d s k v

OKS
v





 







 (9) 

Wherein, d  denotes the metric distance between the 

ground truth coordinates 
 p

  and the predicted coordinates 

 ˆ p
 , s  represents the area occupied by the human in the 

image, ik  denotes the normalization factor, and  0iv   

signifies the visibility of the keypoints. 
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Wherein, m represents the total number of individuals in 

an image, p denotes the ID of a person in the ground truth, 

and T is the threshold set manually. The algorithm's average 

precision is obtained by setting 10 different thresholds for 

OKS (0.50, 0.55, ..., 0.90, 0.95), which is then used to 

compute the final evaluation result. 

C. Ablation Experiment 

To validate the effectiveness of the proposed modules in 

this study, experiments were conducted on the MS-COCO 

dataset. Starting from the original Yolopose network, the 

Fine-Grained Cascaded Spatial Pyramid Pooling module, the 

Strengthen Coordinate Attention module, and the Implicit 

Knowledge module were sequentially added, as shown in 

Table 1. In the table, "√" indicates the inclusion of the module 

in the network, while "-" indicates the removal of the module 

from the network. 

 

Table 1: Ablation Experiment Results 

Network 
Params (M) AP (%) 

Yolopose FGCSPP SCA Implicit Knowledge 

√ - - - 15.1 63.8 

√ √ - - 21.5 64.5 

√ - √ - 14.3 65.5 

√ - - √ 13.9 64.7 

√ √ √ - 20.7 66.1 

√ √ - √ 20.4 64.8 

√ - √ √ 13.1 65.9 

√ √ √ √ 19.5 66.4 

 

Observing Table 1, it is evident that Network 1 

represents the original Yolopose network without any 

additional improvement modules, achieving a prediction 

accuracy of 63.8%. Network 2, with the addition of the Fine-

Grained Cascaded Spatial Pyramid Pooling module 

(FGCSPP) on the basis of the original Network 1, achieved a 

prediction accuracy of 64.5%. Despite a slight increase in 

model parameter count, this module effectively enhanced the 

model's performance by addressing the issue of fine-grained 

feature loss during the pooling process. Moreover, it unified 

the local and global information from feature maps of 

different resolutions, enriching the human feature 

information contained within individual feature maps and 

ultimately resulting in higher human pose estimation 

performance. 

Upon integrating the Strengthen Coordinate Attention 

module into Network 3, the prediction accuracy increased to 

65.5%. This improvement stemmed from the embedded 

attention module enabling the main network to assign 

different weights to various types of information in the image, 

focusing on more critical features. Furthermore, it overcame 

the original network's limitations in local operations, 

modeling long-distance information and thereby increasing 

the model's receptive field, leading to a significant 

enhancement in network performance. 

With the addition of the Implicit Knowledge module in 

Network 4, the prediction accuracy increased to 64.7%. This 

was attributed to the module's increased focus on implicit 

knowledge within the network, allowing the network to fully 

utilize and exploit various types of information with fewer 

parameters. Consequently, it made a significant contribution 

to the model's final prediction accuracy. 

Networks 5, 6, 7, and 8, incorporating different 

combinations of the aforementioned modules, demonstrated 

varying degrees of improvement in prediction accuracy, 

thereby validating the effectiveness of each improvement 

module. 

D. Visualization Experiments for Human Pose Estimation 

To validate the relative effectiveness of the improved 

model compared to the original model in human pose 

estimation, visual experiments were conducted using the MS-

COCO dataset for visualization testing. 

As shown in Figure 5, upon comparing the human pose 

estimation visual images in the first row, it was observed that 

for individuals positioned slightly to the left of the image 

center, there were instances of leg pose misidentification. 

This was due to the original network lacking the capability to 
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model long-distance spatial positions effectively, resulting in 

inadequate learning of the relative positional relationships 

between key anatomical points. Conversely, the improved 

network, equipped with a global perspective, could detect 

such fine-grained information meticulously and effectively. 

Upon comparison of the human pose visualization 

images in the second row, it was noted that in complex scenes 

with multiple individuals, the original network experienced 

partial loss of fine-grained feature information during 

processing. This led to instances of pose omission for 

individuals located near the rear of a car in the image center. 

However, the improved network effectively avoided such 

errors and comprehensively detected all individuals in 

complex scene images. 

Further comparison of the human pose visualization 

images in the third row revealed instances where the legs of 

individuals in the middle of the image were bent or occluded. 

The original network, due to its lack of long-distance spatial 

position modeling capability, only detected thigh poses while 

neglecting lower leg poses. Conversely, the improved 

network effectively addressed such issues. 

 
Figure 5: Comparison of Detection Results After Model 

Improvement 

 

To validate the improved model's generalization ability 

across different numbers of individuals and diverse 

environmental scenarios, visual experiments were conducted 

to visualize human pose in various settings. As depicted in 

Figure 6, it can be intuitively observed that the model 

accurately captures the positions of key points on the human 

body in single-person scenarios, yielding high-quality 

predictions of human poses. As illustrated in Figure 7, in 

multi-person scenarios, the key points and skeletons of 

individuals at different scales can maintain high-quality 

fitting with the instances of individuals in the images. The 

model demonstrates stable predictions of human pose key 

points across various complex scenes, exhibiting robustness 

to different environments and occlusion scenarios. 

 
Figure 6: Single-player Scene Experimental Test Results 

 

 
Figure 7: Multi-player Scene Experimental Test Results 

 

E. Model Comparison Experiment 

To validate the performance of the improved network 

model, comparative experiments were conducted on the MS-

COCO dataset, where mainstream algorithms in the field of 

human pose estimation were selected for comparison. 

Upon examining Table 2, it was observed that the 

improved model achieved a prediction accuracy of 66.4%, 

representing a 2.6% enhancement compared to the original 

baseline model. Contrasting with other types of human pose 

estimation models, it was found that while top-down human 

pose estimation algorithms may achieve higher prediction 

accuracy, they require two-stage networks to work 

simultaneously in practice. The first stage relies on the pre-

processing of object detection networks to provide human 

object proposal boxes, inevitably increasing the additional 

network parameters. This setup is not conducive to hardware-

limited terminal devices in practical engineering deployments. 

Comparing with bottom-up human pose estimation models, 

the improved model achieved higher prediction accuracy 

while maintaining a smaller network parameter count relative 

to other models of similar volume. Furthermore, compared to 

models with similar accuracy, the improved model exhibited 

a smaller network parameter count. For instance, compared to 

the PersonLab model, the parameter count of this model was 

reduced by approximately 3.5 times, achieving a good 

balance between network volume and performance.

 

Table 2: Human Pose Estimation Model Comparison Experiment Results 

Method Model Backbone Network Params (M) AP (%) 

Top Down 

Mask-RCNN 26 ResNet-50-FPN - 63.1 

G-RMI 28 ResNet-101 42.6 64.9 

IntegralPoseRegression 14 ResNet-101 45.0 67.8 

CPN 13 ResNet-50 27.0 68.6 

Bottom Up Hourglass 12 Hourglass 277.8 56.6 
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Openpose 15 VGG-19 - 61.8 

EfficientHRNet 27 EfficientNetB0 23.3 64.8 

PersonLab 29 ResNet-152 68.7 66.5 

PifPaf 30 ResNet-152 - 66.7 

HigherHRNet 31 HRNet-W32 28.6 67.1 

DEKR 16 HRNet-W32 29.6 68.0 

Baseline Model YoloPose 17 Darknet-csp-d53s 15.1 63.8 

Our Model Ours SCADK-Net 19.5 66.4 

 

IV. CONCLUSIONS 

The study proposes an LRFG-Yolopose human pose 

estimation network based on long-distance fine-grained 

modeling. Initially, an enhanced coordinate attention module 

is introduced into the backbone network to endow the 

network with long-distance perception and representation 

capabilities. Subsequently, the original network's feature 

space pyramid pooling module is improved, leading to the 

proposal of the Fine-Grained Cascaded Spatial Pyramid 

Pooling module. Finally, implicit knowledge is embedded 

into the network to reduce network parameter count and 

improve the network's ability for joint optimization of multi-

task training loss functions, thus enhancing overall network 

performance. Experimental results demonstrate that the 

improved network achieves a 2.6% increase in human pose 

estimation prediction accuracy compared to the original 

network. In comparison with current mainstream networks, 

the improved network achieves a better balance between 

network volume and performance. 
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