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ABSTRACT: Wire ropes are crucial load-bearing components in mining conveyance equipment, and machine vision is one of the 

methods used to assess the surface damage condition of wire ropes. In response to the light-sensitive nature of local binary patterns, 

which leads to issues such as differing feature values for similar textures and susceptibility to the influence of excessively large or 

small pixels within local windows, hindering the accurate reflection of window structure information and exacerbating the 

introduction of considerable feature noise, an investigation is conducted. To enhance the gradient structural information among 

pixels within local pixel window, an adaptive threshold binary pattern feature operator is proposed. This operator utilizes the mean 

and variance within the local window to balance the central pixel value, thereby enhancing the interconnection among neighboring 

pixels. To perform feature selection on block histograms, a block-weighted approach is employed. This approach utilizes the concept 

of block weighting and employs correlation coefficients to preprocess feature vectors, thereby enhancing classification accuracy. 

The algorithm experiments were conducted on a dataset of mine wire ropes. The results indicate that the improved local binary 

pattern significantly enhances the classification accuracy of the wire rope dataset, achieving an accuracy of 97.3%. 
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I. INTRODUCTION 

Wire ropes, as a key component of mine hoists, are subjected 

to vibration impact under the high speed and heavy loads of 

hoisting systems1,2,3. In mining operations, wire ropes are 

subjected to prolonged stretching, bending, and alternating 

loads4,5, which inevitably produce defects and damage, such as 

broken wires, deformation, and missing strands; this damage 

increases greatly with time6,7,8. The high probability of safety 

accidents caused by wire rope damage poses a serious threat to 

the safety of operators and mining equipment and adversely 

affects the productivity of mining operations9,10. To ensure the 

efficiency of mining operations and to improve the reliability 

and safety of the equipment, a real-time wire rope damage 

detection system must be adopted in mining operations. 

LBP and its derivative algorithms have exhibited some 

success in texture feature extraction. LBP is a powerful tool for 

describing the differential information within local boxes. It 

takes the center point as the threshold, quantizing the values of 

the surrounding neighboring pixels as "0" or "1" binary symbols, 

and composing the binary code using a certain order to express 

the distribution of pixels within the box. LBP is particularly 

sensitive to changes in illumination. When handling similar 

texture structures in an image, LBP and its improved algorithms 

lead to different coding values for similar structures under 

different conditions. This phenomenon seriously affects the 

performance of LBP and its improved algorithms in tasks such 

as classification and recognition. 

Based on the above analysis, to enhance the gradient 

structural information among the pixels within the local 

neighborhood, an adaptive threshold binary pattern feature 

operator is proposed. This operator utilizes the mean and 

variance within the local neighborhood to balance the central 

pixel value, thereby strengthening the correlation among 

neighboring pixels. To perform feature selection on the block 

histogram, a weighted block approach is utilized, where the 

correlation coefficient is initially applied to process the feature 

vectors. This enables the learning of weights for each image 

block based on the concept of block weighting, ultimately 

enhancing the classification accuracy. To perform feature 

selection on the block histogram, a weighted block approach is 

utilized, where the correlation coefficient is initially applied to 

process the feature vectors. This enables the learning of weights 

for each image block based on the concept of block weighting, 

ultimately enhancing the classification accuracy. 

 

II. LBP 

The Local Binary Pattern (LBP) operator is a feature 

extraction method based on local image texture. LBP uses the 

grayscale value of the central pixel as a threshold to binarize the 

selected surrounding neighborhood pixel points. Specifically, if 

the grayscale value of a neighboring pixel point is greater than 

or equal to the grayscale value of the central pixel, it is labeled 

as 1; otherwise, it is labeled as 0. These binary labels are then 

combined in a clockwise manner to form a binary code. This 
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binary code is the LBP code value corresponding to each center 

pixel. Such as equation (1) and equation (2). 

𝐿𝐵𝑃𝑟,𝑝 = ∑ 𝑠(𝑥𝑟,𝑝 − 𝑥𝑐)2𝑝

𝑝−1

𝑝=0

(1) 

𝑠(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

(2) 

 

III.  LOCAL THRESHOLD BINARY PATTERN (LTBP) 

The Local Binary Pattern (LBP) descriptor offers advantages 

in extracting texture structures. However, it suffers from issues 

such as limited structural diversity, weak noise resistance, and 

sensitivity to lighting conditions, which are particularly 

unfriendly for wire rope recognition in specific environments. 

The LBP descriptor quantifies neighboring pixels around a 

central pixel in a local window into "0" or "1" binary symbols, 

forming a binary code in a predetermined order to represent the 

distribution information within the window. Then, it calculates 

the weighted sum based on the quantized pixels. Therefore, LBP 

only focuses on the differential information between the central 

pixel and all neighboring pixels, neglecting the relationships 

between all pixels within the local window. As a result, it cannot 

fully represent the spatial structure of the image or address the 

introduction of noise. 

To enhance the gradient information between pixels within 

the local window, this section introduces a strategy for updating 

the threshold TH for LBP thresholding. This threshold is related 

to the mean of the cumulative difference values u ̅ and the 

variance σ within the local window. The representation of the 

adaptive threshold local binary pattern is as follows: 

𝐴𝑇𝐿𝐵𝑃𝑟,𝑝 = ∑ 𝑠(𝑥𝑟,𝑖 − 𝑥𝑐)2𝑖

𝑝−1

𝑖=0

(3) 

𝑠(𝑥) = {
1, 𝑥 ≥ TH
0, 𝑥 < TH

(4) 

𝑢̅𝑑𝑖𝑓 =
1

𝑝
∑ |𝑥𝑟,𝑖 − 𝑥𝑐|

𝑝−1

𝑖=0

(5) 

𝑢̅𝑤 =
1

𝑝
∑ 𝑥𝑟,𝑖

𝑝−1

𝑖=0

(6) 

𝜎 = √∑(𝑥𝑟,𝑖 − 𝑢̅𝑤)
2

𝑝−1

𝑖=0

(7) 

𝑇𝐻 =
1

𝜎
𝑢̅𝑑𝑖𝑓 (8) 

By introducing the average difference between the center 

pixel and its neighborhood pixels into the local binary pattern, 

the connection information between the center pixel and its 

neighborhood pixels is strengthened. Essentially, this expands 

the quantization range of the "0" or "1" binary symbols in the 

local binary pattern, effectively preventing noise introduction 

while preserving the rotational invariance of the LBP encoding. 

Calculating the standard deviation of the pixels within the 

box is to evaluate the fluctuation of the pixels in the local box, 

measuring the flatness or steepness of the region. This is done to 

provide negative feedback to the average difference between the 

center pixel and its neighborhood pixels, preventing data offset 

caused by excessively large or small values in the average 

difference. This effectively prevents data sparsity and data 

coupling. 

 

IV. WEIGHTED FREQUENCY DOMAIN HISTOGRAM 

The LBP feature histogram reflects certain image structural 

information. Directly extracting the feature histogram of the 

entire image may lead to data coupling between image 

categories, resulting in the loss of a significant amount of 

information. Additionally, the positional characteristics of the 

LBP feature spectrum are completely ignored. This processing 

may result in irrelevant information inundating the image 

category features. To extract the main defects in the image and 

eliminate interference between different regions, the image is 

divided into blocks. Therefore, the LBP feature histogram 

divides the original image into non-overlapping regions and 

processes the LBP feature histogram for each sub-region. The 

feature vectors of each histogram are concatenated in a certain 

way to express the feature vector of an image. 

Image segmentation allows for better understanding of the 

details in each block of the image, thereby providing a more 

detailed description of the overall image information, which is 

beneficial for subsequent defect recognition. Based on the 

aforementioned feature extraction methods, this chapter 

constructs a frequency histogram to effectively represent the 

features of the texture image. Such as equation (9). 

𝐻𝑖 = ∑ 𝐼{𝑓(𝑥, 𝑦) = 𝑖}

𝑥,𝑦

, 𝑖 = 0, ⋯ , 𝑛 − 1 (9) 

In the equation (9), 𝑛 represents the feature values in the 

image. 

𝐼{𝐴} = {
1,   𝐴  𝑖𝑠 𝑡𝑟𝑢𝑒
0,   𝐴 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒

(10) 

This histogram contains information about features such as 

edges and corner points. Considering the different defect 

positions on the steel rope, the feature histogram should include 

spatial information of the image. To achieve this, the image is 

divided into equal regions for histogram description, as shown 

in Equation (11). 

𝐻𝑖,𝑗 = ∑ 𝐼{𝑓(𝑥, 𝑦) = 𝑖}

𝑥,𝑦

𝐼{(𝑥, 𝑦) ∈ 𝑅𝑗},

𝑖 = 0, ⋯ , 𝑛 − 1, 𝑗 = 0, ⋯ , 𝑚 − 1 (11)

 

In Equation (11), 𝑅𝑗 represents different regions in the image. 

The segmentation histogram expression of the input image 𝐼is 

formed by concatenating the histograms computed for different 

regions, as shown in Equation (12). 

𝐻𝐿𝐵𝑃 = ∑[𝐻1,1, ⋯ , 𝐻𝑖,𝑗]

𝑖,𝑗

(12) 

After studying and observing, it was found that the defective 

areas of the wire rope image are very small and irregularly 

shaped. These areas exhibit significant feature variations, while 

the normal regions occupy the majority of the image. Directly 
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using histograms with equal weights would directly affect the 

recognition results. Traditional histogram extraction ignores this 

characteristic. Therefore, constructing a weighted histogram 

feature is necessary, where the LBP histogram features 

containing defects are assigned larger weights. The principle of 

the weighted LBP histogram feature is shown in Equation (13). 

𝐻𝐿𝐵𝑃 = ∑[𝑤1𝐻1,1, ⋯ , 𝑤𝑖𝐻𝑖,𝑗]

𝑖,𝑗

(13) 

In Equation (13), 𝑤𝑖  represents the weight of the feature 

histogram for each region. 

The Pearson correlation coefficient is introduced in this 

paper to measure the correlation between the vectors of different 

image blocks. It is utilized for one-to-one or one-to-many 

partitioning into multiple groups, followed by weighting of the 

LBP features for each block. 

The Pearson correlation coefficient is used to measure the 

degree of linear correlation between two continuous variables, 

primarily assessing the strength and direction of the linear 

relationship between the two variables. The formula is as follows: 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

(14) 

In Equation (14): 𝜌𝑋,𝑌 represents the correlation coefficient 

between vectors 𝑋 and 𝑌, 𝑐𝑜𝑣(𝑋, 𝑌) represents the covariance 

between variables 𝑋 and 𝑌,, and 𝑋 and 𝑌 represent the standard 

deviations of variables 𝑋 and 𝑌, respectively. 

If an image is divided into 𝑁  local regions, then the 

initialization of sample weights is as follows: 

𝐷𝑤 = (𝑤1, 𝑤2, ⋯ , 𝑤𝑁), 𝑤𝑖 =
1

𝑛
(15) 

The equation indicates that 𝐷𝑤 is a vector of weights for one 

image. When training weighted samples, the correlation vector 

for one block is obtained based on the joint correlation 

coefficient 𝐾: 

Given that the defect type occupies a small portion of the 

image and assuming that the defect type is uncorrelated with 

other types, the values in the 𝐷𝑖
𝑊  vector tend to be generally 

small and relatively stable. The mean 𝐷𝑠  in 𝐷𝑖
𝑊  is used as a 

criterion, and the following formula is employed to learn its 

weights.  

𝛼𝑚 = 𝜂𝑙𝑛
1−𝐷𝑠

𝐷𝑠
(16)

here 𝜂 represents the learning rate, and with the above formula, 

further weights for different regions in a single image can be 

obtained. 

 

V. EXPERIMENT 

A. Data Set 

The data was captured using an industrial camera model 

MER2-2000-6GM under simulated lighting conditions similar 

to those in underground mines. These data were obtained from 

mining wire ropes under different operating conditions. The 

study involved wire ropes with diameters of 13mm for 810, 

14mm for 619, and 22mm for 18*7. During the experiment, 

images were captured under simulated underground mining 

conditions, successfully collecting images of four different 

defect types, including normal, missing wires, broken wires, and 

deformations. The dimensions of these images are 200 pixels by 

400 pixels. 

(a) Healthy
(b) Missing 

stands
(c) Broken wires (d) Deformed

 
Fig1 Wire rope dataset 

 In the experiment, all texture images were first converted to 

grayscale images. Then, they underwent filtering and feature 

extraction processing. Subsequently, the images were 

partitioned into blocks, and the feature vectors were 

concatenated to form the feature vector of an image. Finally, 

normalization was performed. The dataset was classified in a 

"3:2" ratio for classification experiments. Additionally, the 

number of histogram features was uniformly mapped to the [0-

15] interval. The experimental setup included a computer 

equipped with an Intel Core i5-7300HQ processor, 16GB of 

memory, and running on the Windows 10 operating system. The 

experiments were conducted using Python 3.7. 

B. LBP Map 

After encoding the images with LBP features, sorting them at 

the same positions in the images results in the LBP maps. LBP 

maps visually represent the magnitude and distribution of LBP 

values, aiding observation and analysis. Below are the LBP 

maps and improved LBP maps for comparative experiments 

under a 10*TH condition. 

 
LBP 

 
LTBP 

Fig 2. LBP map 
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Fig 3. Comparison of accuracy between different classifiers 

 

C. Classification Algorithm 

Different machine learning classification algorithms have 

their own characteristics, and accordingly, they exhibit varying 

degrees of accuracy in recognizing surface defects in wire rope 

images. Therefore, this study examines the performance of 

extracted surface image features of wire ropes under three 

classification algorithms: SVM, KNN, and DT. 

The experimental parameters for these four classification 

algorithms are set as follows: the maximum depth of the decision 

tree is 10, the minimum number of samples per node is 5, and 

the minimum samples per leaf node is 1; the optimal K for K-

Nearest Neighbors algorithm is 1; the maximum number of 

decision trees for Random Forest is 100. The experimental 

results, as shown in Figure 4-12, indicate that the SVM classifier 

performs the best, with a multi-class precision of 97.3%, which 

is 16.3%, 3.3%, and 2.3% higher than DT, KNN, and RF, 

respectively. Moreover, in terms of algorithm execution time, 

SVM is only slightly higher than KNN, with 0.084s compared 

to 0.024s. The RF classifier exhibits slightly higher classification 

accuracy, but it consumes more than ten times the time 

compared to SVM. In this study, the SVM classifier was selected 

for defect recognition in steel wire ropes. As shown in Figure 4-

13, the horizontal axis represents the ratio of training set to test 

set, indicating the classifier's classification accuracy under 

different ratios of training set to test set. It can be visually 

observed that SVM outperforms other classifiers in terms of 

classification accuracy. To comprehensively analyze the 

performance of the proposed feature operator, a training set to 

test set ratio of 3:2 was chosen. 

 
Fig 4. Classification accuracy under different sample ratios 

 

D. Number Of Image Blocks 

Image chunking can better grasp the detailed information of 

each piece of the image to obtain a more detailed description of 

the overall image information, which is conducive to subsequent 

defect recognition. The image is divided into n*n regions, and 

different sizes of region have a great impact on the recognition 

accuracy, feature extraction time and pattern recognition time. 

 
Fig 5. Recognition accuracy under different block numbers 

 

The Figure 5 illustrates the performance of LBP features on 

the steel wire rope dataset with varying block sizes n*n. It shows 

that as the number of blocks increases, the classification 

performance of LBP features significantly improves under 

different filtering scales. This is because a larger number of 

blocks can extract more detailed texture structure information. 

However, as the number of blocks continues to increase, the 

classification performance of LBP features gradually stabilizes, 

with no significant improvement. This is due to the smoothing 

effect on defect feature histograms as the number of 

segmentation blocks increases, resulting in less distinct defect 

histogram distributions. 
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Fig 6. Recognition accuracy under different block numbers 

 

Figure6 demonstrates the processing speed of exponential 

weighted guided filtering under different image block sizes and 

LBP sampling radii R. As the number of image blocks and the 

LBP sampling radius increase, the algorithm's processing speed 

also continuously rises. 

E. LBP Parameters 

TABLE 1. LTBP PERFORMANCE 

𝑟, 𝑝 Accuracy/% 
𝑀𝑎𝑐𝑟𝑜

− 𝐹1 
Time/s 

𝑟 = 1, 𝑝 = 4 0.88 0.8607 1.774 

𝑟 = 1, 𝑝 = 8 0.973 0.9652 3.103 

𝑟 = 2, 𝑝 = 4 0.863 0.8513 1.723 

𝑟 = 2, 𝑝 = 8 0.973 0.9654 2.968 

𝑟 = 3, 𝑝 = 4 0.825 0.8164 1.842 

𝑟 = 3, 𝑝 = 8 0.978 0.9633 2.952 

𝑟 = 3, 𝑝 = 16 0.915 0.9035 5.768 

 

When the sampling radius increases, the classification 

accuracy of ARLBP feature vectors decreases. This is because 

as the sampling radius increases, the ARLBP feature vectors 

become more sparse, making it difficult to accurately estimate 

local image structures with similar local structural information, 

leading to a decrease in classification accuracy. However, with 

an increase in the number of sampling points, the classification 

accuracy of ARLBP features significantly increases. This is 

because extracting richer texture features leads to better 

performance. 

The time consumption of the ARLBP feature extraction 

algorithm remains relatively unchanged with an increase in the 

sampling radius, while it significantly increases with an increase 

in the number of sampling points. Considering the overall 

performance of the ARLBP algorithm, it is recommended to 

choose LTBP features with 𝑟 = 1, 𝑝 = 8. 

F. Comparison Of LBP Methods 

To validate the effectiveness and superiority of the proposed 

local binary pattern features, experiments on classification 

accuracy were conducted using the steel wire rope dataset 

created in this study. The results were compared with several 

common texture feature extraction methods. These methods 

include Local Binary Pattern (LBP)11, Non-Redundant Local 

Binary Pattern (NRLBP)12, Extended Local Binary Pattern 

(Extended LBP)13, Uniform Pattern Local Binary Pattern (UP-

LBP)14, Rotation Invariant Local Binary Pattern (RI-LBP)15, 

Local Ternary Pattern (LTP)16, Local Directional Pattern 

(LDP)17, Local Optimal Pattern (LOP)18, and Multi-Scale Local 

Binary Pattern (MB-LBP)19. 

This section compares and analyzes different texture feature 

extraction algorithms. The traditional LBP algorithm is highly 

sensitive to noise in image processing and lacks robustness to 

changes in the central pixel. The table shows that the proposed 

algorithm in this paper outperforms the above-mentioned 

algorithms and exhibits robustness to noise in the images.The 

table compares the feature extraction time and pattern 

recognition time of different algorithms. It can be observed that, 

except for Extended LBP, UP-LBP, and RI-LBP operators, the 

feature extraction time is significantly higher than that of other 

texture feature extraction algorithms. The LTBP algorithm 

proposed in this paper exhibits a moderate level of feature 

extraction time. From the table above, it can be concluded that 

LTBP is comparable to other algorithms in terms of feature 

extraction time and pattern recognition time, while achieving 

significantly higher recognition rates than other algorithms. 

Therefore, the proposed LTBP algorithm can provide excellent 

identification results for surface damage on steel ropes. 

 

TABLE 2. THE RECOGNITION ACCURACY OF LBP ALGORITHM 

Algorithm Bins Accuracy/% 

LBP 256 86.02 

Extended LBP 256 90.18 

UP-LBP 59 89.70 

RI-LBP 36 87.80 

LTP 256 84.97 

LDP 256 88.86 

LOP 256 86.75 

MB-LBP 256 89.01 

NRLBP 128 83.65 

ARLBP 256 97.3 

 

VI. CONCLUSIONS 

This paper addresses the complex and diverse textures, 

dispersed intra-class defects, and similar inter-class defects on 

the surface of steel wire ropes. It proposes an adaptive threshold 

local binary pattern (LBP) algorithm based on weighted 

frequency domain image blocks. Firstly, by partitioning the 

images, the overall detail information of the images is enhanced. 

Secondly, each image block is evaluated and its weight is 

learned using the joint correlation coefficient. Thirdly, the 

adaptive threshold LBP is employed to reduce the noise 

introduced by traditional algorithms and enhance the 

relationship between neighboring pixels, thereby improving the 

descriptive ability of the images. The experiments conducted on 
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the steel wire rope dataset demonstrate that the proposed 

algorithm significantly improves the defect recognition 

performance under the influence of both intra-class and inter-

class features of the steel wire rope surface. The accuracy 

reaches 97.3%, addressing the issue of low recognition rates 

caused by insufficient texture description in traditional single-

feature extraction methods. 
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