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ABSTRACT: In this paper, we deal with a particular type of information, namely interval-valued data. We face the problem of 

clustering data units described by intervals of the real data set (interval data). Currently, clustering methods rely on dissimilarity 

measures for interval-valued data uses representative point distance. The Data Group Average Clustering UPGMA is one of the 

popular algorithms to construct a phylogenetic tree according to the distance matrix created by the pairwise distances among taxa. 

A phylogenetic tree is used to present the evolutionary relationships among the interesting biological species based on the similarities 

in their genetic sequences. Interval-valued Data Group Average Clustering (IUPGMA) extends Group Average clustering to 

interval-valued data.  Based on the Range Euclidean Metric it is a reliable alternative to be used to uncertainty quantification from 

interval-valued data. They contain more information than point-valued data, and such informational advantages could be exploited 

to yield more efficient analysis. 

KEYWORDS: hierarchical clustering, unsupervised machine learning, interval valued-data, interval arithmetic, range Euclidean 

metric  

 

I. INTRODUCTION 

Cluster analysis or clustering is the task of grouping a set of 

objects in such a way that objects in the same group are more 

similar to each other than to those in other groups (clusters).  

Clustering can therefore be formulated as a multi-objective 

optimization problem. 

Some popular clustering algorithms includes K-Means 

Clustering, Hierarchical Clustering (We’ll discuss here), 

Mean-Shift Clustering, Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN), and Expectation-

Maximization (EM) Clustering using Gaussian Mixture 

Models (GMM). 

Hierarchical clustering is an approach for identifying 

groups in the dataset. It does not require us to pre-specify the 

number of clusters to be generated as is required by the k-

means approach. It has an added advantage over K-means 

clustering in that it results in tree called a dendrogram. To 

determine how close together two clusters are, we can use a 

few different methods including: Complete linkage clustering 

find the max distance between points belonging to two 

different clusters. Single linkage clustering finds the 

minimum distance between points belonging to two different 

clusters. Mean linkage clustering finds all pairwise distances 

between points belonging to two different clusters and then 

calculate the average. Centroid linkage clustering find the 

centroid of each cluster and calculate the distance between the 

centroids of two different clusters. Ward’s minimum variance 

method minimize the total.  

Group Average, also called the unweighted pair-group 

method, is perhaps the most popular of all the hierarchical 

cluster techniques. Better known as UPGMA is treated as a 

clustering technique that uses the (unweighted) arithmetic 

averages of the measures of dissimilarity. Note that the 

unweighted term indicates that all distances contribute 

equally to each average that is computed and does not refer to 

the math by which it is achieved. Thus, the simple averaging 

in WPGMA produces a weighted result and the proportional 

averaging in UPGMA produces an unweighted result. 

UPGMA is a distance method and therefore needs a distance 

matrix [1]. 

Mather [2] suggests that the Group Average method is the 

safest to use as an exploratory method, although he goes on 

to suggest that several methods should be tried and the one 

with the largest cophenetic correlation be selected for further 

investigation. 

Interval-valued data are frequent in real life; examples 

include maximum and minimum daily temperatures, 

maximum and minimum asset prices in a trading period, high 

and low blood pressures, bid and ask prices, saving and 

lending interest rates, and so on. They contain more 

information than point-valued data, and such informational 

advantages could be exploited to yield more efficient analysis. 

In this paper, we deal with a particular type of information, 

namely interval-valued data.  We face the problem of 

clustering data units described by variables whose values are 

intervals of the real data set (interval data) [3-4]. We will 
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focus on IUPGMA-Group Average Clustering agglomerative 

method for Interval-valued Data. The Range Euclidean 

Metric for interval-valued data is used to compare two vectors 

of intervals.  

The rest of the paper is organized as follows: Section II 

presents basic concepts of interval arithmetic and distance 

measures for interval data. Section III describes interval-

valued input distance matrix for clustering. Section IV 

introduces the approach IUPGMA for clustering interval data, 

Section V provides the conclusion. 

 

II. INTERVAL ANALYSIS 

Interval arithmetic is a method for determining absolute 

errors of an algorithm, considering all data errors and 

rounding [5]. Interval arithmetic makes systematic 

calculations through intervals [𝑥] = [𝑥,  𝑥]  limited to 

representable machine numbers 𝑥,  𝑥 ∈ 𝔽 , instead of real 

numbers 𝑥 . Arithmetic operations +,   −,   ×, ÷ are defined 

using intervals. Interval algorithms produce interval results 

guaranteed to contain the true solution. If ⨀ denotes any of 

these arithmetic operation for real numbers 𝑥 and 𝑦, then the 

corresponding operation for arithmetic on interval numbers 

[𝑥] and [𝑦] is 

[𝑥]⨀[𝑦] = {𝑥⨀𝑦|𝑥 ∈ [𝑥], 𝑦 ∈ [𝑦]}. 

Thus, the interval [𝑥]⨀[𝑦] resulting from the operations 

contain every possible number that can be found as 𝑥⨀𝑦 for 

each 𝑥 ∈ [𝑥], and each 𝑦 ∈ [𝑦]: 

      [𝑥] + [𝑦] = [𝑥, 𝑥] + [𝑦, 𝑦] = [𝑥 + 𝑦, 𝑥 + 𝑦] 

      [𝑥] − [𝑦] = [𝑥, 𝑥] − [𝑦, 𝑦] = [𝑥 − 𝑦, 𝑥 − 𝑦] 

      [𝑥] ⋅ [𝑦] = [𝑥, 𝑥] ⋅ [𝑦, 𝑦] 

                      

= [𝒎𝒊𝒏 (𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦) , 𝒎𝒂𝒙 (𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦)] 

       
[𝑥]

[𝑦]
= [𝑥, 𝑥] ⋅

1

[𝑦,𝑦]
= [𝑥, 𝑥] ⋅ [

1

𝑦
,

1

𝑦
] ,  if 0 ∉ [𝑦, 𝑦]          (1) 

The interval arithmetic operations are defined for exact 

calculation [5]. Machine computations are affected by 

rounding errors. Therefore, the formulas were modified in 

order to consider the called directed rounding [6]. 

Throughout this paper, all matrices are denoted by bold 

capital letters (𝐀), vectors by bold lowercase letters (𝒂), and 

scalar variables by ordinary lowercase letters (a). Interval 

variables are enclosed in square brackets ( [𝑨], [𝒂], [𝑎] ). 

Underscores and overscores denote lower and upper bounds, 

respectively. A real interval [x]  is a nonempty set of real 

numbers  

       [𝑥] = [𝑥, 𝑥] = {𝑥̃ ∈ 𝑅: 𝑥 ≤ 𝑥̃ ≤ 𝑥}                                 (2) 

where 𝑥  and 𝑥  are called the infimum (inf) and supremum 

(sup), respectively, and 𝑥̃  is a point value belonging to an 

interval variable [𝑥]. The set of all intervals ℝ is denoted by 

𝐼(ℝ)  where  

       𝐼(𝑅) = {[𝑥, 𝑥]: 𝑥, 𝑥 ∈ 𝑅: 𝑥 ≤ 𝑥}.                                             (3) 

A. Order Relations of Intervals 

The important issue in using interval data for decision 

problems is the choice of an appropriate interval order 

relation. Unlike real numbers that are ordered by a strict 

transitive relation “<” (if 𝑎  <  𝑏 and 𝑏 <  𝑐, then 𝑎 <  𝑐 for 

any 𝑎, 𝑏, and 𝑐 ∈ ℝ), the ranking of intervals is not symmetric, 

and as consequence, in many situations, the definitions cannot 

differentiate two intervals in general.  Theoretically intervals 

can only have partial order in 𝐼(ℝ).  According to Moore et 

al. (2009) [7], two transitive order relations can be defined for 

intervals: (i) [𝑥] ≤ [𝑦] ⇔ 𝑥 ≤ 𝑦, and (ii) [𝑥] ⊆ [𝑦] ⇔ 𝑦 ≤

𝑥  and  𝑥 ≤ 𝑦  (set inclusion). Let [𝑥]  and [𝑦]  be a pair of 

arbitrary intervals. These can be classified as follows: non-

overlapping intervals; partially overlapping intervals; 

completely overlapping intervals. In contrast to real numbers, 

it is not straightforward to define a total order relation for 

intervals. As a result, researchers have defined order relations 

in different ways. Most of these definitions cannot specify the 

order relations properly for completely overlapping intervals. 

A detailed description and comparison between these and 

other ranking definitions is given in Karmakar and Bhunia 

(2012) [8].  

Definition. Given two intervals [𝑥], [𝑦] ∈ 𝐼(ℝ),  [𝑥] ≤ [𝑦] , 

iff 𝑚([𝑥]) ≤ 𝑚([𝑦]) , where 𝑚(𝒳)  is a point within the 

interval 𝒳  ∈ {{[𝑥], [𝑦]}, usually the midpoint, infimum, and 

supremum. We propose the following order relation: [𝑥] ≤

[𝑦]  is determined by choosing the interval infimum that 

captures the “minimum” between the two intervals, i.e., the 

interval with the lowest infimum.  

B. Range of interval-valued function 

The range of an interval-valued function can be expressed in 

interval form as 

       𝑟𝑎𝑛𝑔𝑒(𝑓([𝒙])) = 𝑓([𝑥1], [𝑥2], … , [𝑥𝑛])  

= [𝑖𝑛𝑓 (𝑓([𝑥1], [𝑥2], … , [𝑥𝑛]), 𝑠𝑢𝑝 (𝑓([𝑥1], [𝑥2], … , [𝑥𝑛]))] 

                                                                                            (4) 

where the inf and sup are taken for all 𝑥𝑖 ∈ [𝑥]𝑖(𝑖 = 1, … 𝑛). 

Finding the range of a multi-variable function over a box 

is a fundamental problem  

encountered in numerous applications. The main focus of 

interval arithmetic is the simplest way to calculate upper and 

lower endpoints for the range of values of a function in one 

or more variables. These endpoints are not necessarily the 

supremum or infimum, since the precise calculation of those 

values can be difficult or impossible. In special cases the 

exact range can be found in a straightforward way [7],[9]. 

C. Range Euclidean Distance 

The Range Euclidean Distance between interval vectors [𝑝] 

and [𝑞] is the interval length of the lines segment connecting 

them (  [𝑝][𝑞] ). 

In cartesian coordinates, if [𝑝] = ([𝑝1], [𝑝2], … , [𝑝𝑛]) and 

[𝑞] = ([𝑞1], [𝑞2], … , [𝑞𝑛])  are two interval vectors in 

Euclidean n-space (i.e., 𝐼(ℝ𝑛) ), then the distance [𝑑2] from 

[𝑝]  to [𝑞]  , or from [𝒒]   to [𝒑]  is given by the Interval 

Pythagorean formula: 
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𝑑2([𝒑], [𝐪])   =  𝑑2([𝐪], [𝐩])    = 

= √([𝑞1] − [𝑝1])2 + ([𝑞2] − [𝑝2])2 + ⋯ + ([𝑞𝑛] − [𝑝𝑛])2 

= √∑([𝑞𝑖] − [𝑝𝑖])2

𝑛

𝑖=1

 

                                                                                            (5) 

Consider the function 𝑥2  as a monotonically decreasing 

function for 𝑥 < 0 and a monotonically increasing function 

for 𝑥 > 0.  

The range corresponding to the interval [𝑥]2  can be 

calculated by applying the function to its endpoints: 

[𝑥1, 𝑥2]2 = {

[x1
2, x2

2]     x1 ≥ 0

[x2
2, x1

2]     x2 < 0

0, 𝑚𝑎𝑥{𝑥1
2, 𝑥2

2}          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

                                                                                              (6) 

 

III.  INTERVAL-VALUED INPUT DISTANCE MATRIX 

Table I provides the oils dataset originally presented by 

Ichino [10].The categories are 6 types of oil (linseed, perilla, 

cottonseed, sesame, camellia, and olive) and 2 fats (beef and 

hog); N = 8 multi-valued objects. There are four interval-

valued variables, namely, Specific Gravity (in 𝑔/𝑐𝑚3) , 

Freezing Point (in℃), Iodine Value, and Saponification.  

The iodine value (or iodine adsorption value) in chemistry 

is the mass of iodine in grams that is consumed by 100 grams 

of a chemical substance.  

https://en.wikipedia.org/wiki/Iodine_value (Accessed 

January 20, 2024).  

Saponification value (or saponification number, or 

Koettstorfer number, also referred to as sap in short) 

represents the number of milligrams of potassium hydroxide 

required to saponify 1g of fat under the conditions specified.  

https://en.wikipedia.org/wiki/Saponification_value 

(Accessed January 20, 2024).  

Table I. interval-valued observations: oils and fats. 

Sample 

(Label)  

Features 

Specific 

gravity  

Freezing 

point  

Iodine 

value  

Saponifica-

tion value  

Linseed 

oil (A) 

[0.930,  

 0.935] 

[−27, −18] [170,  

204]
 

[118, 196] 

Perilla 

oil (B) 

[0.930,  

0.937] 

[−5, −4] [192,  

208]
 

[188, 197] 

Cottonseed 

oil (C) 

[0.916,  

0.918] 

[−6, −1] [99,  

113]
 

[189, 198] 

Sesame 

oil (D) 

[0.92,  

0.926] 

[−6, −4] [104,  

116]
 

[187, 193] 

Camellia 

oil (E) 

[0.916,  

0.917] 

[−21, −15] [80,  

82]
 

[189, 193] 

Olive 

oil (F) 

[0.914,  

0.919] 

[0, 6] [79,  

90]
 

[187, 196] 

Beef 

tallow (G) 

[0.86,  

0.87] 

[30, 38] [40,  

48]
 

[190, 199] 

Hog 

fat (H)  

[0.858,  

0.864] 

[22, 32] [53,  

77]
 

[190, 202] 

 

In our example, the distance matrix is an 8 × 8 table with the 

lines and rows representing the objects (i.e., fats and oils) 

under consideration. As the distance between objects A and 

B (in this case [13,  90.632] ) is the same as between B and 

A, the distance matrix is symmetrical. Furthermore, since the 

distance between an object and itself include zero, one must 

only look at either the lower or upper non-diagonal elements 

(see Table II lower non-diagonal distance matrix). 

 

IV. INTERVAL-VALUED HIERARCHICAL CLUSTERING 

 

Step 3 can be done in different ways, which is what 

distinguishes HCA (Hierarchical Clustering Algorithms). 

Should be stressed that in Step 2, we will use infimum to find 

the closest pair of clusters. Should be stressed that in Step 2, 

we will use infimum of interval to find the closest pair of 

clusters. The range metrics gives make possible others merge 

points as explored (see [3]). 

A. IUPGMA 

The IUPGMA (Interval-valued data Unweighted Pair-Group 

Method with Arithmetic mean) algorithm produces rooted 

dendrograms. At each step, the nearest two clusters are 

combined into a higher-level cluster. The distance between 

any two clusters [𝒜] and [ℬ], each of size (i.e., cardinality) 

|[𝒜]| and |[ℬ]|, is taken to be the average of all distances 

𝑑([𝑥], [𝑦]) between pairs of interval-valued data objects [𝑥] 

in [𝒜]  and [𝑦]  in [ℬ] , that is, the mean distance between 

elements of each cluster: 

1

|[𝒜]| ∙ |[ℬ]|
∑ ∑ 𝑑([𝑥], [𝑦])

[𝑦]∈[ℬ][𝑥]∈[𝒜]

 

                                                                                            (7) 

In other words, at each clustering step, the updated distance 

between the joined clusters [𝒜] ∪ [ℬ] and a new cluster [𝒳]  

is given by the proportional averaging of the 𝑑([𝒜], [𝒳])  

and 𝑑([ℬ], [𝒳]) distances: 

𝑑([𝒜] ∪ [ℬ], [𝒳]) = 

https://en.wikipedia.org/wiki/Iodine_value
https://en.wikipedia.org/wiki/Saponification_value
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|[𝒜]| ∙ 𝑑([𝒜], [𝒳]) + |[ℬ]| ∙ 𝑑([𝒜], [𝒳])

|[𝒜]| + |[ℬ]|
 

                                                                                            (8) 

The IUPGMA is similar to its weighted variant, the 

IWPGMA method. Unweighted means that that all distances 

contribute equally to each average that is computed and does 

not refer to the used algebraic approach by which it is 

achieved. IWPGMA and UPGMA produces a weighted and 

unweighted results, respectively. 

B. Step-by-Step IUPGMA Clustering 

First step 

First clustering: Let us assume that we have eight elements 

(𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺) . From distance matrix Table II of 

pairwise distances between them: 𝑑(𝐶,𝐷) =  [0.002, 20.857] 

has the smallest infimum value of distance matrix from 

Table II, so we join elements 𝐶 and 𝐷.  

First distance matrix update: We then proceed to update the 

initial distance matrix Table II into a new distance matrix 

Table III, reduced in size by one row and one column because 

of the clustering of 𝐶  with 𝐷.  

𝑑(𝐶,𝐷)→𝐴 =  
(1 × 𝑑𝐶𝐴 + 1 × 𝑑𝐷𝐴)

(1 + 1)
                                                 

=  
( 1 × [58.249, 134.54] +  1 × [55.317, 127.1] )

2
= [56.783,  130.82] 

𝑑(𝐶,𝐷)→𝐵 =  
(1 × 𝑑𝐶𝐵 + 1 × 𝑑𝐷𝐵)

(1 + 1)
                                                

=  
( 1 × [79, 109.54] +  1 × [76, 104.5] )

2
= [77.5,  107.02] 

𝑑(𝐶,𝐷)→𝐸 =  
(1 × 𝑑𝐶𝐸 + 1 × 𝑑𝐷𝐸)

(1 + 1)
                                                

=  
( 1 × [19.235, 39.624] +  1 × [23.769, 40.262] )

2
= [21.502, 39.943] 

𝑑(𝐶,𝐷)→𝐹 =  
(1 × 𝑑𝐶𝐹 + 1 × 𝑑𝐷𝐹)

(1 + 1)
                                                 

=  
( 1 × [9.0553, 37.697] +  1 × [14.56, 39.925] )

2

= [11.807,  38.811] 

 

 

Table II. Lower Non-Diagonal Distance Matrix. 

 A B  C  D  E F G 

B [13,  

90.632]  

      

C [58.249,  

134.54] 

[79,  

109.54] 

     

D [55.317,  

127.1] 

[76,  

104.5] 

[0.002,  

20.857] 

    

E [88,  

145.42] 

[110.4,  

129.38]  

[19.235,  

39.624] 

[23.769,  

40.262] 

   

F [82,  

151] 

[102.0,  

129.86] 

[9.0553,  

37.697] 

[14.56,  

39.925] 

[15,  

29.632] 

  

G [131.1,  

194.12] 

[147.9,\  

173.77] 

[59.682,  

85.82] 

[65.513,  

88.635] 

[55.217,  

73.11] 

[39.204,  

63.938 ] 

 

H [101.2,  

182.59] 

[117.9,  

159.97]  

31.827,  

72.202] 

[37.483,  

75.087] 

[37.121,  

61.799] 

[16.124,  

51.167] 

[5,  

42.06 ] 

Min. Distance (linkage) = [0.002, 20.857] 

𝑑(𝐶,𝐷)→𝐺 =  
(1 × 𝑑𝐶𝐺 + 1 × 𝑑𝐷𝐺)

(1 + 1)
                                                

=  
( 1 × [59.682, 85.82] +  1 × [65.513, 88.635] )

2
= [62.597, 87.227] 

𝑑(𝐶,𝐷)→𝐻 =  
(1 × 𝑑𝐶𝐻 + 1 × 𝑑𝐷𝐻)

(1 + 1)
                                                

=  
( 1 × [31.827, 72.202] +  1 × [37.483, 75.087] )

2
= [34.655, 73.644] 

 

Second step 

Second clustering: We now reiterate the two previous steps 

starting from the new distance matrix Table III. Here, 

𝑑(𝐺,𝐻) = [5,  42.06]  has the lowest infimum value of 

Table III, so we join elements 𝐺 and 𝐻. 

Second distance matrix update: We then proceed to update 

the matrix Table III into a new distance matrix Table IV, 

reduced in size by one row and one column because of the 

clustering of 𝐺 with 𝐻: 

𝑑(𝐺,𝐻)→𝐴 =  
(1 × 𝑑𝐺𝐴 + 1 × 𝑑𝐻𝐴)

(1 + 1)
                                                

=  
( 1 × [131.1, 194.12] +  1 × [101.23, 182.59] )

2

= [116.17,  188.36] 

𝑑(𝐺,𝐻)→𝐵 =  
(1 × 𝑑𝐺𝐵 + 1 × 𝑑𝐻𝐵)

(1 + 1)
                                                

=  
( 1 × [147.95,  173.77] +  1 × [117.9,  159.97] )

2

= [132.93,  166.87] 

𝑑(𝐺,𝐻)→(C,D) =  
(1 × 𝑑𝐺(C,D) + 1 × 𝑑𝐻(C,D))

(1 + 1)
                               

=  
( 1 × [65.513,  88.635]  +  1 × [37.483,  75.087])

2

= [48.626,  80.436] 
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𝑑(𝐺,𝐻)→𝐸 =  
(1 × 𝑑𝐺𝐸 + 1 × 𝑑𝐻𝐸)

(1 + 1)
                                                

=  
( 1 × [55.217,  73.11] +  1 × [37.121,  61.799] )

2

= [46.169,  67.454] 

𝑑(𝐺,𝐻)→𝐹 =  
(1 × 𝑑𝐺𝐹 + 1 × 𝑑𝐻𝐹)

(1 + 1)
                                                

=  
( 1 × [39.204,  63.938]  +  1 × [16.124,  51.167] )

2

= [27.664,   57.552] 

Third step 

Third clustering: We now reiterate starting from the new 

distance matrix Table IV. Here, 𝑑(𝐶,𝐷),𝐹 = [11.807,  38.811] 

has the lowest infimum value of Table IV so we join elements 

(𝐶, 𝐷) a and 𝐹. 

Third distance matrix update:} We then proceed to update 

the matrix Table IV into a new distance matrix Table V, 

reduced in size by one row and one column because of the 

clustering of (𝐶, 𝐷)  with 𝐹: 

𝑑(𝐶,𝐷),𝐹→𝐴 =  
(2 × 𝑑(𝐶,𝐷),𝐴 + 1 × 𝑑𝐹,𝐴)

(2 + 1)
                                       

=  
( 2 × [56.783,  130.82] +  1 × [82,  151]  )

3

= [65.188,  137.55] 

𝑑(𝐶,𝐷),𝐹→𝐵 =  
(2 × 𝑑(𝐶,𝐷),𝐵 + 1 × 𝑑𝐹,𝐵)

(2 + 1)
                                       

=  
( 2 × [77.5,  107.02] +  1 × [102.07,  129.86] )

3

= [85.692,  114.63] 

𝑑(𝐶,𝐷),𝐹→𝐸 =  
(2 × 𝑑(𝐶,𝐷),𝐸 + 1 × 𝑑𝐹,𝐸)

(2 + 1)
                                       

=  
( 2 × [21.502,  39.943] +  1 × [15,  29.632] )

3

= [19.335,  36.506] 

𝑑(𝐶,𝐷),𝐹→(𝐺,𝐻) =  
(2 × 𝑑(𝐶,𝐷),(𝐺,𝐻) + 1 × 𝑑𝐹,(𝐺,𝐻))

(2 + 1)
                     

=  
( 2 × [48.626,  80.436] +  1 × [27.664,  57.552] )

3

= [41.639,  72.808] 

 

Table III. Grouped Cluster (C,D). 

 A B  C, D E F G 

B [13,  

90.632]  

     

C, D [56.783,  

130.82] 

[77.5,  

107.02] 

    

E [88,  

145.42] 

[110.4,  

129.38]  

[21.502,  

39.943] 

   

F [82,  

151] 

[102.0,  

129.86] 

[11.807,  

38.811] 

[15,  

29.632] 

  

G [131.1,  

194.12] 

[147.9,\  

173.77] 

[62.597,  

87.227] 

[55.217,  

73.11] 

[39.2

04,  

63.9

38 ] 

 

H [101.2,  

182.59] 

[117.9,  

159.97]  

[34.655,  

73.644] 

[37.121,  

61.799] 

[16.1

24,  

51.1

67] 

[5,  

42.0

6 ] 

Min. Distance (linkage) = [5, 42.06] 

Table IV. Grouped Cluster (G,H). 

 A B  C, D E F 

B [13,  

90.632]  

    

C, D [56.783,  

130.82] 

[77.5,  

107.02] 

   

E [88,  

145.42] 

[110.4,  

129.38]  

[21.502,  

39.943] 

  

F [82,  

151] 

[102.0,  

129.86] 

[11.807,  

38.811] 

[15,  

29.632] 

 

G, H [116.17,  

188.36] 

[132.93,  

166.87] 

[48.626,  

80.436] 

[46.169,  

67.454] 

[27.664,  

57.552] 

Min. Distance (linkage) = [11.807, 38.811] 

 

Table V. Grouped Cluster ((C,D),F). 

 A B  (C, D), F E 

B [13,  

90.632]  

   

(C, D), F [65.188,  

137.55] 

[85.692,  

114.63] 

  

E [88,  

145.42] 

[110.4,  

129.38]  

[19.335,  

36.506] 

 

G, H [116.17,  

188.36] 

[132.93,  

166.87] 

[41.639,  

72.808] 

[46.169,  

67.454] 

Min. Distance (linkage) = [13, 90.632] 

Fourth step 

Fourth clustering: We now reiterate starting from the new 

distance matrix Table V. Here, 𝑑𝐴,𝐵 =  [13, 90.632] has the 

lowest infimum value of Table V, so we join element 𝐴 with 

cluster 𝐵. 

Fourth distance matrix update: We then proceed to update 

the matrix Table V  into a new distance matrix Table VI, 

reduced in size by one row and one column because of the 

clustering of 𝐴 with 𝐵: 

𝑑(𝐴,𝐵)→((𝐶,𝐷),𝐹) =  
(1 × 𝑑𝐴,((𝐶,𝐷),𝐹) + 1 × 𝑑𝐵,((𝐶,𝐷),𝐹))

(1 + 1)
              

=  
( 1 × [65.188,  137.55] +  1 × [85.692,  114.63] )

2

= [75.44,  126.09] 

𝑑(𝐴,𝐵)→𝐸 =  
(1 × 𝑑𝐴,𝐸 + 1 × 𝑑𝐵,𝐸)

(1 + 1)
                                       

=  
( 1 × [88,  145.42] +  1 × [110.45,  129.38] )

2

= [99.226,  137.4] 

𝑑(𝐴,𝐵)→(𝐺,𝐻) =  
(1 × 𝑑𝐴,(𝐺,𝐻) + 1 × 𝑑𝐵,(𝐺,𝐻))

(1 + 1)
                              

=  
( 1 × [116.17,  188.36] +  1 × [132.93,  166.87] )

2

= [124.55,  177.61] 
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Table VI Grouped Cluster (A,B). 

 A, B (C, D), F E 

(C, D), F [75.44,  

126.09] 

  

E [99.226,  

137.4] 

[19.335,  

36.506] 

 

G, H [124.55}, 

177.61] 

[41.639,  

72.808] 

[46.169,  

67.454] 

Min. Distance (linkage) = [19.335, 36.506] 

 

Fifth step 

Fifth clustering: We now reiterate starting from the new 

distance matrix Table VI. Here, 𝑑𝐸,((𝐶,𝐷),𝐹) = [19.335,   

36.506] has the lowest infimum value of Table VI, so we join 

element 𝐸 with cluster ((𝐶, 𝐷), 𝐹). 

Fifth distance matrix update: We then proceed to update 

the matrix Table VI into a new distance matrix Table VII, 

reduced in size by one row and one column because of the 

clustering of 𝐸  with ((𝐶, 𝐷), 𝐹):  

𝑑𝐸,((𝐶,𝐷),𝐹)→(𝐴,𝐵) =  
(1 × 𝑑E,(𝐴,𝐵) + 3 × 𝑑((𝐶,𝐷),𝐹),(𝐴,𝐵))

(1 + 3)
            

=  
( 1 × [99.226,  137.4] +  3 × [75.44,  126.09] )

4

= [81.387,  128.92] 

𝑑𝐸,((𝐶,𝐷),𝐹)→(𝐺,𝐻) =  
(1 × 𝑑𝐸,(𝐺,𝐻) + 3 × 𝑑((C,D),F),(G,H))

(1 + 3)
           

=  
( 1 × [46.169,  67.454] +  3 × [41.639,  72.808] ] )

4

= [42.771,  71.47] 

 

Table VII. Grouped Cluster (E,(C,D),F)). 

 A, B E, (C, D), F) 

E, (C, D), F) [81.387,  

128.92] 

 

G, H [124.55,  

177.61] 

[42.771,  

71.47] 

Min. Distance (linkage) = [42.771, 71.47] 

 

Final step 

Starting from the new distance matrix Table VII we have 

𝑑(𝐺,𝐻),(𝐸,((𝐶,𝐷),𝐹)) =  [42.771,  71.47]   the lowest infimum 

value of Table VII, so we join element (𝐺, 𝐻) with cluster 

(𝐸, ((𝐶, 𝐷), 𝐹)). We then proceed to update the matrix into a 

new distance matrix Table VIII, reduced in size by one row 

and one column because of the clustering of (𝐺, 𝐻)  with 

(𝐸, ((𝐶, 𝐷), 𝐹)):  

𝑑(𝐺,𝐻),(𝐸,((𝐶,𝐷),𝐹))→(𝐴,𝐵)=  
(2 × 𝑑(𝐺,𝐻),(𝐴,𝐵) + 4 × 𝑑(𝐸,((𝐶,𝐷),𝐹)),(𝐴,𝐵))

(2 + 4)
 

=  
( 2 × [124.55,  177.61]  +  4 × [81.387,  128.92])

6
 

= [95.775,  145.15]  

 

Table VII. Grouped Cluster ((G,H),(E,(C,D),F)). 

 A, B 

(G, H), (E, (C, D), F)) [95.775,145.15] 

Min. Distance (linkage) = [95.775,145.15] 

This process is summarized by the clustering diagram on 

Figure 1. In that diagram, the columns are associated with the 

objects and the rows are associated with heights of clustering. 

The rectangle colour introduced for each level for 'X' cells is 

placed in a given row if the corresponding objects are merged 

at that stage in the clustering. We observe partial order from 

[heights], not every pair of heights interval are disjoint sets. 

 

 
Figure 1: IUPGMA Diagram. 

 

V. CONCLUSIONS 

This paper concerns the IUPGMA clustering to interval-

valued data based on the Range Euclidean Metric. Interval-

valued Data Group Average method is an alternative to be 

used in uncertainty quantification for interval-valued data. 

Uncertainty propagation is the quantification of uncertainties 

in system output(s) propagated from uncertain inputs. Range 

Euclidean lower and upper bounds are associated with heights 

of clustering. Note that, conclusions about the proximity of 

two objects can be drawn only based on the height where 

branches containing those two objects first are fused. Range 

metrics can allow for a reliable analysis of the clustering 

results on interval-valued data.  

Interval-valued Data Group Average Clustering can be 

considered as an extension of classical Group Average 

method. It can be understood in the context of cluster 

membership (fuzzy clustering). Basically, it allows partial 

membership which means that it contains elements that have 

varying degrees of membership in the cluster. From this, we 

can understand the difference between UPGMA method and 

IUPGMA method: UPGMA method contains elements that 

satisfy precise properties of membership while IUPGMA 

method contains elements that satisfy imprecise properties of 

membership. 

It is strongly recommend comparing the dendrograms from 

different representatives to find the closest (most similar) pair 

of clusters and merge them into a new single cluster on 

several different datasets with known cluster patterns so that 

you can get the feel of the technique. 
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