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Abstract In this paper we introduce the so-called risk-exogenous measure and study the price
of exogenous risks based on a fractional jump-diffusion financial market model. The option
price equation indicates that the evaluation of risk-exogenous is consistent with that of the
classical neutral risk. An empirical example shows that the risk-exogenous valuation is more
suitable for practical financial markets by comparing the error between actual price of stocks
and the price computed from BS formula and the option price equation under risk-exogenous
measures respectively.
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1 Introduction

The study of option price has been an active field over the past several decades. It is well
known that one deduces via the standard geometric Brownian motion the famous Black-Scholes
model [1]. While numerous empirical researches show that fluctuations in stock prices have the
properties of fat tail and long memory, which can not be reflected in a geometric Brownian
motion. Fractional Brownian motion has been considered as a suitable tool in financial models
because it not only allows for fat tails, but also allows for long-range dependence property, see
[2],[3],[4].

On the other hands, the stock prices may jump discontinuously due to the influence of
some significant information in practical financial markets. So in this paper a fractional jump-
diffusion model is adopted to have a full consideration of all these actual factors. Based on
the fractional jump-diffusion model, plenty of works focus on option pricing problems. For
example, Xue and Sun [5] discuss European option under fractional jump-diffusion Ornstein-
Uhlenbeck model and Xue et al. [6] obtain the pricing formula of European option under
fractional jump-diffusion financial market model with stochastic interest rate. Some empirical
analyses show that the option prices obtained in the fractional jump-diffusion model are much
closer to the actual market prices but still have some errors. This may be caused by some risks
from external markets and is easy to be ignored.
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fractional jump-diffusion market
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some extent. While some other information from external markets may also affect stock price,
such as supply and demand of firm, currencies and prices policy, international trade factors as
well as emergencies, which are called exogenous risks. For example, Pearce et al. [7] study
the relationship between stock prices and economic news. Rigobon et al. [8] show the effect
of monetary policy on stock market. These researches mainly focus on qualitative descriptions
and seldom give the quantitative expression. So how to measure the exogenous risks and what
are the effects of these risks on the price of underlying risky assets and contingent claims are
meaningful questions. It’s worth noting that emergencies, that is some significant information,
are often characterized by jump terms reflected in equations of stock price. So in this paper we
consider some other exogenous risks except for emergencies.

An outline of this paper is as follows. In section 2 a fractional jump-diffusion market model
is given and a generalized fractional Ito formula is derived. In section 3 we study the price
of exogenous risks by fractional Girsanov measure transformation and introduce the concept
of risk-exogenous measure. In section 4 we discuss risk-exogenous valuation. In section 5 an
empirical example is given to show that the advantage of risk-exogenous valuation.

2 Fractional jump-diffusion market model

Given a probability space (Ω,FH ,FH
t , P ) and a standard fractional Brownian motion {BH

t ,
0 ≤ t ≤ T} with dBH

t = ε
√

dt2H where ε follows the standard normal distribution N(0, 1).
The σ-algebra generated by the fractional Brownian motion is denoted as FH

t , i.e., FH
t =

σ{BH
s , 0 ≤ s ≤ t} and FH

T = FH .

Consider the following model: the dynamic of risky asset price process satisfies the follow-
ing stochastic differential equation

dSt = St{(µ− λθ)dt + σdBH
t + YtdNt} (2.1)

where µ and σ are constants and {Nt, 0 ≤ t ≤ T} is the Poisson process with intensity λ, and
the size of the ith jump is Yi with Y0 = 0 and Yi > −1, i = 1, 2, .... Assume {Yi, i ≥ 1} is
a sequence of independent identically distributed random variables with Yi ∼ N(θ, δ2) under
the probability measure P . Assume {BH

t , 0 ≤ t ≤ T}, {Nt, 0 ≤ t ≤ T} and {Yi, i > 1} are
mutually independent. On the other hand, there exists a risk-free money account satisfying

dDt = rDtdt (2.2)

where r is constant representing risk-free rate and D0 = 1. The following lemma can be
regarded as a generalized fractional Ito formula.

Lemma 2.1. If the risky asset St satisfies fractional jump-diffusion equation (2.1) and risk-free
asset satisfies the equation (2.2), let f(t, St) is a function with continuous partial derivatives
∂f
∂t

, ∂f
∂S

and ∂2f
∂S2 . Then the following formula holds

df =
∂f

∂t
dt +

∂f

∂S
S(µ− λθ)dt + Hσ2t2H−1S2 ∂2f

∂S2
dt +

∂f

∂S
SσdBH

t

+ [f(t, (1 + Y )S)− f(t, S)]dNt.
(2.3)

21714                                                                                 Ru Zhou, AFMJ Volume 3 Issue 08 August 2018

"Option pricing under risk-exogenous measures in afractional jump-diffusion market"

As we know, the dynamic of asset price process is the reflection of market information to



t. From (2.1) we have

∆S = S(µ− λθ)∆t + Sσ∆BH + SY ∆N. (2.4)

Then

(∆S)2 = S2(µ− λθ)2(∆t)2 + S2σ2(∆BH)2 + S2Y 2(∆N)2 + 2(µ− λθ)σS2∆t∆BH

+ 2(µ− λθ)Y S2∆t∆N + 2σY S2∆BH∆N

= S2σ2(∆BH)2 + S2Y 2(∆N)2 + o(∆t).

(2.5)

As for the classical Brownian motion {Bt, t ≥ 0}, we know (∆B)2 → dt when ∆t → 0. For
fractional Brownian motion we have the following statements. Since

V ar((∆BH)2) = E((∆BH)4)− (E((∆BH)2))2

= E((∆BH)4)− (V ar(∆BH) + (E(∆BH))2)2

= E(ε4(∆t2H)2)− (∆t2H)2

= (∆t2H)2(E(ε4)− 1)

= o(∆t).

(2.6)

It indicates that when ∆t → 0, (∆BH)2 is a deterministic function with respect to t, so

(∆BH)2 → E((dBH)2) = dt2H = 2Ht2H−1dt. (2.7)

By Taylor Expansion for f(t, S), it holds

∆f =
∂f

∂S
∆S +

∂f

∂t
∆t+

1

2

∂2f

∂S2
(∆S)2 +

1

2

∂2f

∂S∂t
∆S∆t+

1

2

∂2f

∂t2
∆t2 + o((∆S)2 +∆t2). (2.8)

It is easy to see that ∆S∆t, (∆t)2 and o((∆S)2 + ∆t2) are all o(∆t). Then combining (2.4)
and (2.5), it has

∆f =
∂f

∂S
S(µ− λθ)∆t +

∂f

∂S
Sσ∆BH +

∂f

∂S
SY ∆N +

∂f

∂t
∆t

+
1

2

∂2f

∂S2
S2σ2(∆BH)2 +

1

2

∂2f

∂S2
S2Y 2(∆N)2 + o(∆t).

(2.9)

Let ∆t → 0, since

∂f

∂S
SY ∆N +

1

2

∂2f

∂S2
S2Y 2(∆N)2 = [f(t, (1 + Y )S)− f(t, S)]dN (2.10)

then (2.9) can be writen as

df =
∂f

∂t
dt +

∂f

∂S
S(µ− λθ)dt +

∂f

∂S
Sσ∆BH +

1

2

∂2f

∂S2
S2σ22Ht2H−1dt

+ [f(t, (1 + Y )S)− f(t, S)]dN

=
∂f

∂t
dt +

∂f

∂S
S(µ− λθ)dt + Hσ2t2H−1S2 ∂2f

∂S2
dt +

∂f

∂S
SσdBH

+ [f(t, (1 + Y )S)− f(t, S)]dN.

(2.11)

Then the proof is finished.
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3 The price of exogenous risks

Consider the market consisting of one risk-free money account Dt and one risky asset St.
let αt and βt be the amounts of money account and risky asset respectively, held at time t. The
value of this portfolio at time t is given by

Vt = αtDt + βtSt. (3.1)

Assume the portfolio is self-financing, that is

dVt = αtdDt + βtdSt

= rαtDtdt + βtSt(µ− λθ)dt + βtStσdBH
t + βtStYtdNt

= r(Vt − βtSt)dt + βtSt(µ− λθ)dt + βtStσdBH
t + βtStYtdNt

= rVtdt + βtSt(µ− r − λθ)dt + βtStσdBH
t + βtStYtdNt

= rVtdt + βtStσ(
µ− r + λ̄θ̄ − λθ

σ
dt + dBH

t ) + βtSt(YtdNt − λ̄θ̄dt)

= rVtdt + βtStσdWH
t + βtSt(YtdNt − λ̄θ̄dt)

(3.2)

where

ξ =
µ− r + λ̄θ̄ − λθ

σ
(3.3)

and
WH

t = ξt + BH
t . (3.4)

By Fractional Girsanov Theorem [9] there exists probability measure Q ∼ P on the space
(Ω,FH) such that WH

t is a fractional Brownian motion with respect to measure Q and Q is
the equivalent quasi-martingale measure of P . Under this measure transformation, the poission
process {Nt, t ≥ 0} have intensity λ̄ and expected jump size EQ(Y ) = θ̄.

It is not hard to see that the dynamic of the risky asset price process St under Q is given by
the following SDE:

dSt = St{(r − λ̄θ̄)dt + σdWH
t + YtdNt}. (3.5)

In general, Q is called risk-neutral measure. And ξ in (3.3) consists of two sections: the price
of market risks µ−r

σ
and the price of jump risks λ̄θ̄−λθ

σ
.

As we known, except for market risks and jump risks, some other exogenous risks can not
be ignored from the variability of external market environment including supply and demand
of firm, currencies and prices policy, international trade factors and so on. Here we assume
that every contingent claim in the market has exogenous risks and these exogenous risks are
proportional to the price of risky asset St.

Definition 3.1. The exogenous risks Gt in a time interval dt is defined by

dGt = ηStdt (3.6)

where η is a constant representing a rate of exogenous risks.
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dt, that is

dVt = αtdDt + βt(dSt + dGt)

= rαtDtdt + βtSt(µ− λθ + η)dt + βtStσdBH
t + βtStYtdNt

= r(Vt − βtSt)dt + βtSt(µ− λθ + η)dt + βtStσdBH
t + βtStYtdNt

= rVtdt + βtSt(µ− r + η − λθ)dt + βtStσdBH
t + βtStYtdNt

= rVtdt + βtStσ(
µ− r + λ̄θ̄ − λθ + η + λ̃θ̃ − λ̄θ̄

σ
dt + dBH

t )

+ βtSt(YtdNt − λ̃θ̃dt)

= rVtdt + βtStσ(dWH
t +

η + λ̃θ̃ − λ̄θ̄

σ
dt) + βtSt(YtdNt − λ̃θ̃dt)

= rVtdt + βtStσdZH
t + βtSt(YtdNt − λ̃θ̃dt)

(3.7)

where

γ =
η + λ̃θ̃ − λ̄θ̄

σ
(3.8)

and
ZH

t = γt + WH
t . (3.9)

Fractional Girsanov Formula [9] means that there exists probability measure R ∼ Q on the
space (Ω,FH) such that ZH

t is a fractional Brownian motion and R is the equivalent quasi-
martingale measure of Q. Under this new measure R, the Poisson process {Nt, t ≥ 0} have
intensity λ̃ and expected jump size ER(Y ) = θ̃. Then we can get the dynamic of the risky asset
price process St under R is given by the following SDE:

dSt = St{(r − η − λ̃θ̃)dt + σdZH
t + YtdNt}. (3.10)

Here we call the measure R risk-exogenous measure since it is subjected to exogenous risks Gt.
And γ in (3.8) consists of two sections: the price of exogenous risks η

σ
and the price of jump

risks eλeθ−λ̄θ̄
σ

.

4 Option valuation under risk-exogenous measures

In this section we discuss the effect of exogenous risks on contingent claims valuation. The
following theorem indicates that the risk-exogenous valuation is consistent with the risk-neutral
valuation in form. Here we consider a contingent claim with the payoff fT = f(T, ST ) at time
T . Let fT is bounded and fT ∈ L2(Ω,FH).

Theorem 4.1. The dynamic of risky asset price process follows (3.10). Then the price of the
contingent claim fT at time t is given by

f = f(t, St) = ER[e−r(T−t)fT |FH
t ] (4.1)

where ER[·|FH
t ] refers to the quasi-conditional expectation under the probability measure R.

Thus f satisfies the following equation

∂f

∂t
+

∂f

∂S
S(r − η − λ̃θ̃) + Hσ2t2H−1S2 ∂2f

∂S2
+ λ̃ER[f(t, (1 + Y )S)− f(t, S)] = rf. (4.2)
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Proof. From the quasi-martingale pricing theorem in [10], we know any bounded contingent
claims fT with fT ∈ L2(Ω,FH) can be priced by the quasi-conditional expectation of their
discounted payoff, that is (4.1) holds. From Lemma 2.1 when St follows (3.10) it is easy to see
that

df =
∂f

∂t
dt +

∂f

∂S
S(r − η − λ̃θ̃)dt + Hσ2t2H−1S2 ∂2f

∂S2
dt +

∂f

∂S
SσdZH

t

+ [f(t, (1 + Y )S)− f(t, S)]dNt.
(4.3)

We can deduce from (4.1) that

e−rtf(t, St) = ER[e−rT f(T, ST )|FH
t ] (4.4)

which implies that e−rtf(t, St) satisfies quasi-martingale property under the measure R. Then
by taking differential for the term e−rtf(t, St) it has

d(e−rtf(t, St)) = e−rt(−rfdt + df)

= e−rt(−rfdt +
∂f

∂t
dt +

∂f

∂S
S(r − η − λ̃θ̃)dt + Hσ2t2H−1S2 ∂2f

∂S2
dt

+ λ̃ER[f(t, (1 + Y )S)− f(t, S)]dt +
∂f

∂S
SσdZH

t

+ [f(t, (1 + Y )S)− f(t, S)]dNt − λ̃ER[f(t, (1 + Y )S)− f(t, S)]dt).

(4.5)

Rewrite (4.5) as follows

d(e−rtf(t, St)) = e−rt(Adt + B + C) (4.6)

where

A =− rf +
∂f

∂t
+

∂f

∂S
S(r − η − λ̃θ̃) + Hσ2t2H−1S2 ∂2f

∂S2

+ λ̃ER[f(t, (1 + Y )S)− f(t, S)],

(4.7)

B =
∂f

∂S
SσdZH

t , (4.8)

C = [f(t, (1 + Y )S)− f(t, S)]dNt − λ̃ER[f(t, (1 + Y )S)− f(t, S)]dt. (4.9)

According to the quasi-martingale property of fractional Brownian motion and

ER(C) = 0 (4.10)

the coefficient A of the term dt must be equal to 0. Then (4.2) is easy to be obtained.

5 Examples

In this section we give an example to indicate the price computed by risk-exogenous valua-
tion is closer to the actual price compared with the risk-neutral valuation. For the convenience
of calculation, here we consider the classic Browian motion case with H = 1

2
. First we know

the option pricing equation under the risk-neutral measure Q is

∂f

∂t
+

∂f

∂S
Sr +

1

2
(σ2 + λ̄EQ[Y 2])S2 ∂2f

∂S2
= rf. (5.1)

6
1718                                                                                Ru Zhou, AFMJ Volume 3 Issue 08 August 2018

"Option pricing under risk-exogenous measures in afractional jump-diffusion market"



According to Theorem 4.1, the option pricing equation under the risk-exogenous measure R is

∂f

∂t
+

∂f

∂S
S(r − η) +

1

2
(σ2 + λ̃ER[Y 2])S2 ∂2f

∂S2
= rf. (5.2)

Given the special parameters, then we can get the price of the contingent claim. Take Huaxia
50ETF(stock code:510050) option in China as the example which first appears to the market on
9th February, 2015. The price of this kind of options are computed under Black-Scholes model,
the risk-neutral valuation and risk-exogenous valuation in this paper. Some parameters are given
as follows:

the rate of exogenous risks η = 0.3%;

the expectation of jump size θ = −0.5;

the variance of jump size δ = 1;

the closing price of 50ETF on 6th February, 2015 is 2.291 yuan;

the strike price of the options are 2.20 yuan, 2.25 yuan, 2.30 yuan, 2.35 yuan and 2.40 yuan;

the delivery time of the options is June, so the expire time is 4
12

;

the risk-free rate r = 4.92% by choosing the three-year treasury bonds interest rates of
China;

the volatility of 50ETF σ = 0.4097.

Then the prices of call and put options are obtained by MATLAB as Table 1 and Table 2.

Table 1: Price of call options
strike price actual price BS formula error equation(5.1) error equation(5.2) error

2.20 0.2815 0.2791 0.0024 0.2811 0.0007 0.2822 0.0004
2.25 0.2555 0.2531 0.0024 0.2552 0.0008 0.2563 0.0003
2.30 0.2314 0.2289 0.0025 0.2311 0.0007 0.2321 0.0003
2.35 0.2091 0.2064 0.0027 0.2087 0.0007 0.2098 0.0004
2.40 0.1885 0.1858 0.0027 0.1881 0.0006 0.1891 0.0003

Table 2: Price of put options
strike price actual price BS formula error equation(5.1) error equation(5.2) error

2.20 0.1560 0.1523 0.0037 0.1553 0.0007 0.1564 0.0004
2.25 0.1793 0.1755 0.0038 0.1787 0.0006 0.1798 0.0005
2.30 0.2044 0.2004 0.0040 0.2037 0.0007 0.2049 0.0005
2.35 0.2313 0.2272 0.0041 0.2305 0.0008 0.2318 0.0005
2.40 0.2599 0.2557 0.0042 0.2590 0.0009 0.2605 0.0004

The errors between actual price and valuated price via every model are also showed to help
us make the conclusion. Compared with classic BS model without jump which has an average
error 0.0025 for call options and 0.0040 for put options, the jump-diffusion model can better
characterize the option price whatever (5.1) and (5.2). Based on the jump-diffusion model, we
compute the call and put option prices under the risk-neutral valuation principle as equation
(5.1) and the risk-exogenous valuation principle as equation (5.2). The results show that the
risk-neutral valuation has the same average errors 0.0007 for call and put options. While the
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risk-exogenous valuation is better than the former two methods which has very small errors with
the actual option price in the market, the average errors are 0.0003 and 0.0005 respectively.
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